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Pierre Auger Observatory
4 Fluorescence 

buildings, 6 
telescopes each

Water Cherenkov 
Tanks 

1600 Projected
1438 Deployed
1364 Taking Data

85% Completed

3000 km2

HYBRID DETECTOR

FD

SD
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Pierre Auger Observatory:

Surface Detector water 
Cherenkov tanks,  enhanced 
sensitivity to muons

Inclined showers (θ>60°):

At ground, mainly composed of 
muons

● Enhanced exposure and sky coverage.

● Muon measurements at ground relevant in mass 

composition and hadronic model studies.

● Neutrino detection is possible through inclined 

showers.

Inclined showers at the Pierre Auger Observatory
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Lateral 
density 
distribution

Moderately 
inclined event

θ = 48°

Highly 
inclined event

θ = 79°

Ground plane Shower plane

Geometry Muon deflection
in geomagnetic field



5Muon map normalization fitted to data =>  N
19

 

Maps for 1019 eV 
protons

Different zenith and 
azimuth

AIRES + QJSJET

The shape of the map 
is MASS and MODEL 
independent

Electromagnetic signal: 
parametrized from 
simulations

Use MUON MAPS: 2-dim distributions of muons 
at ground
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191 Events

● E
FD

 near-calorimetric 

energy measurement by 
the fluorescence detector

● Event selection: quality 
cuts on FD events 

● No hybrid events above 
75°

● Good correlation 
between the energy and 
N

19
 

● FD energy systematic 
uncertainty 22%

Inclined Hybrid Events

Used to calibrate the spectrum

Hybrid Events: seen 
simultaneously by 
Fluorescence and 
Surface detectors
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E
FD

 = 6.1 ·1019 eV

Hybrid Event: FD Reconstruction

Camera track

First  -> Last

Longitudinal profile

Fitted Gaisser-Hillas
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N

19
 = 8.5  => E

cal
 = 5.9· 1019 eV

Hybrid Event: SD Reconstruction

Time at ground Signals on shower plane

First -> Last

Signal levels from the muon map
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E = 10-α/β(N
19

)1/β

E (N
19

=1) = 8.0 ± 0.3 EeV 

Energy Uncertainty

Low energy cut 5 EeV

Calibration

38 Events

Energy scale determined from Fluorescence data



10Exposure 1510 km2 yr sr (29% of θ<60º)

60° < θ < 80°

Jan 2004 – 
Feb 2007

734 events

FD Systematics (22%)

Calibration uncertainty (10%)

UHECR spectrum using inclined events

Aperture Saturation

Energy 
independent 

aperture 
above 

saturation

Slope 2.7 ± 0.1
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Neutrino identification @ Auger

Both: inclined showers with significant em content

Earth skimming ν
τ

Down-going ν

Lint (ν) ~ 500 km  (θ>95, Earth opaque)
   
LEloss ( )  ~ 10 km  (e, much smaller) 

Ldecay () ~ 50 km  (, much larger)  
(1 EeV)

Old hadronic 
shower

Young neutrino shower
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Earth skimming neutrinos
Identification Acceptance

Selection of very inclined showers 
through time and space 
compatibility of the footprint

S
ig

n
al

 (
V

E
M

)

Time (ns)
Select events where most tanks have 
FADC traces characteristic of 
electromagnetic  showers

No candidate (80% 
identification efficiency)

Conversion   : 
➢ Neutrino cross section
➢ Tau energy losses
➢ Tau decay

Acceptance for  showers:
➢ Depends on energy and geometry
➢ Growing detector

Young Showers

Very Inclined Showers

em

μ



13

Earth Skimming Tau Neutrino Flux Limit

Jan 04 
 – Dec 06 

90% CL

dN 

dE
= f 0E

−2

Conservative: worst-case for systematic uncertainties in the acceptance
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Outlook
● Inclined events can be used to extend Auger Observatory aperture 

by a 30% at the highest energies.

● The analysis, based on muon maps and FD energy calibration, 

leads to consistent results.

● Implications for composition or hadronic models presently under 

study but limited by statistics.

● Very inclined showers used for neutrinos searches. 

● Spectra dependent limit to tau neutrinos of E2dN/dE 2·10-7 GeV 

cm-2 s-1 sr-1

●  GZK neutrinos will be tested in 10 years.

● Down-going neutrino channel still to be fully exploited.
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Comparison with θ < 60° spectrum

Good  agreement

θ < 60°
θ > 60°
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Trigger & Aperture
Trigger probability as 
calculated with the muon 
maps. 

Trigger saturates at N
19

= 1

High Trigger Levels
● T4: selection of physical 
events.
● Quality trigger (T5): station 
near to the core surrounded 
by 6 working stations. 

Basic aperture cell

1.95 km1.95 km22

Aperture -> count 
active cells
Exposure -> integrate 
detector configurations 

Energy independent aperture above N
19

= 1

10 EeV



18

Energy resolution from hybrid events

(ΔE/E)
FD

~ 10% => (ΔE/E)
N19 

~ 18%

N
19

 uncertainties:

- Statistical ~10%

- Fluctuations 5% - 15%

- Systematics [Preliminary]

   Propagation of geometric 

uncertainty 12% @ 80° [Max]

    Uncertainty on the em 

correction 7% @ 60° [Max]
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sin2θ distribution

0.30 < N
19

 < 0.45

0.45 < N
19

 < 1.0

N
19

 > 1.0

Distribution flattens as we reach saturation

Attenuation implicit 
in the muon maps

sin2 distribution flat if:

1. Detector is saturated

2. The attenuation in 

the maps is correct
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Cross-check: electromagnetic 
correction

θ < 68°

θ > 68° EM correction more 
important below 68°

The two spectra 
agree within the 

statistics
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Worst/Best combination of scenarios leads to 
a factor ~3 difference for the flux limit

Source Uncertainty

MC Simulations
Interactions in Earth
Extensive Air Shower +20%, -5%

Pierre Auger Observatory
Acceptance
Topography

Theoretic knowledge
Tau Polarisation +17%, -10%
Cross Section +5, -9%
Energy Losses +25%, -10%

Total +132%, -45%

±5%

±2%
+18%

Theoretic knowledge

All contributions

Parton Distribution Function uncertainties at 
low x and high Q2 are not taken into account

EARTH SKIMMING ACCEPTANCE 
SYSTEMATICS
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time (ns)

 Young Showers

time (ns)

S
ig

na
l (

V
E

M
)

Young (e,) Old ()

 Inclined Showers

width
length

v ij=
d ij

t j−t i

 length/width > 5
 <v>  (0.29,0.31) m/ns 

RMS(v) < 0.08 m/ns

d ij

t i

t j
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AccE , dhc 

∫ dhc
d 2N
dE dhc

Acc E , dhc


