Inclined Showers at the Pierre Auger Observatory

Energy spectrum Neutrino Limit

Pedro Facal San Luis

Departamento de Física de Partículas, Universidad de Santiago de Compostela

for the Auger Collaboration

Pierre Auger Observatory

HYBRID DETECTOR

na

tada

10

4 Fluorescence buildings, 6 telescopes each

SD

FD

Water Cherenkov **Tanks 1600 Projected 1438 Deployed** 1364 Taking Data

85% Completed

Pierre Auger Observatory:

Surface Detector water Cherenkov tanks, enhanced sensitivity to muons

Inclined showers (θ>60°):

At ground, mainly composed of muons

Inclined showers at the Pierre Auger Observatory

- Enhanced exposure and sky coverage.
- Muon measurements at ground relevant in mass composition and hadronic model studies.
- Neutrino detection is possible through inclined showers.

Use MUON MAPS: 2-dim distributions of muons at ground

Muon map normalization fitted to data => N

5

Inclined Hybrid Events

• E_{FD} near-calorimetric energy measurement by the fluorescence detector

- Event selection: quality cuts on FD events
- No hybrid events above 75°

Good correlation
between the energy and
N₁₉

• FD energy systematic uncertainty 22%

Used to calibrate the spectrum

Hybrid Event: FD Reconstruction

Hybrid Event: SD Reconstruction

Time at ground

Signals on shower plane

Signal levels from the muon map

 $N_{19} = 8.5 => E_{cal} = 5.9 \cdot 10^{19} eV$

Calibration

Energy scale determined from Fluorescence data

UHECR spectrum using inclined events

10

Neutrino identification @ Auger

Both: inclined showers with significant em content

Earth skimming neutrinos

Identification

identification efficiency)

Acceptance

Conversion $v_{\tau} \rightarrow \tau$:

- Neutrino cross section
- > Tau energy losses
- > Tau decay

Acceptance for τ showers:

- Depends on energy and geometry
- > Growing detector

Earth Skimming Tau Neutrino Flux Limit

Conservative: worst-case for systematic uncertainties in the acceptance

Outlook

- Inclined events can be used to extend Auger Observatory aperture by a 30% at the highest energies.
- The analysis, based on muon maps and FD energy calibration, leads to consistent results.
- Implications for composition or hadronic models presently under study but limited by statistics.
- Very inclined showers used for neutrinos searches.
- Spectra dependent limit to tau neutrinos of E²dN/dE 2·10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹
- GZK neutrinos will be tested in 10 years.
- Down-going neutrino channel still to be fully exploited.

Comparison with $\theta < 60^{\circ}$ spectrum

Energy independent aperture above N₁₉= 1

Energy resolution from hybrid events

sin² distribution

Distribution flattens as we reach saturation

Cross-check: electromagnetic correction

EARTH SKIMMING ACCEPTANCE SYSTEMATICS

Parton Distribution Function uncertainties at low x and high Q² are not taken into account

Worst/Best combination of scenarios leads to a factor ~3 difference for the flux limit

