



## Search for Associated Higgs Boson Production at DØ



Jonas Strandberg

on behalf of the DØ collaboration



# Introduction

- The SM parameters fit to EW precision data prefers a light Higgs boson.
- The most sensitive search channels for  $114 < m_H < \sim 135$  GeV at the Tevatron is associated Higgs production.
- Leptonically decaying W or Z boson allows for rejection of multijet background.



- DØ results for the summer are still in internal review, no updated results in this talk.
  - Typical  $\mathcal{L} \approx 1 \; \mathrm{fb}^{-1}$ .
  - No Runllb data (2006-2007 data).
- Try to give an idea of what to expect for the Lepton-Photon conference (LP07).





η = 2

η = 3



# The DØ Detector



- Liquid Ar and U calorimeter.
- Three-layer Muon system with coverage out to  $|\eta| < 2$ .
- Magnetic fields provided by a 2 T solenoid and a 1.8-2 T toroid.



η = 0

Preshower

Solenoid

Fiber Tracker

Silicon Tracker

- New innermost layer of the silicon detector installed in spring 2006.
  - Will be used in updated results shown at LP07.





- Expected cross section  $\sigma(VH)$  of the order of 0.1 pb.
- With  $BR(W \rightarrow \ell \nu) \sim 0.1$  and typical event selection efficiency of  $\sim 10\%$ , expect about 2 event/fb<sup>-1</sup> of data (per lepton type).



## Higgs Decay and b-tagging





- For  $114 < m_H < \sim 135$  GeV, the decay  $H \rightarrow b\bar{b}$  dominates.
- For  $m_H \gtrsim 135$  GeV the  $H \rightarrow WW$  decay is more sensitive.
- Decays of *b*-hadrons produce displaced tracks and vertices.
- All analyses use a NN-based *b*-tagging algorithm.
  - High I.P. tracks, SVX ...



#### WH - Cut Based Analysis

- WH is the most sensitive channel for a Higgs with  $m_H < 135$  GeV.
- Expected  $\sigma(WH) \times Br(H \rightarrow b\bar{b}) = 0.13$  pb for  $m_H = 115$  GeV.
- 1  $\text{fb}^{-1}$  of data analyzed in the *e*+jets and the  $\mu$ +jets channels.
- Event Selections:
  - Equal to two jets with  $p_T > 20~{\rm GeV}$  and  $|\eta| < 2.5$ .
  - An electron or a muon with  $p_T > 20$  GeV.
  - A well reconstructed primary vertex with > 2 tracks.



- $\not\!\!\!E_T > 20 \text{ GeV}$ .
- Either two loose NN *b*-tagged jets  $(70\% \ b, 4.5\% \ l$ -tag eff.)...
- ... or one tight NN *b*-tagged jet  $(48\% \ b, 0.5\% \ l$ -tag eff.).





#### Sample before *b*-tagging



• Multijet (QCD) background estimated from data, other backgrounds estimated from simulated samples. Relatively pure *W*+jets sample.





#### Sample after *b*-tagging



• Limit on  $\sigma(WH) \times Br(H \to b\bar{b})$  derived from the invariant mass distribution of the jets. Expected 3.6 signal events ( $m_H = 115 \text{ GeV}$ ).



# WH - Using Matrix Element (ME) Discriminant





• Using LO ME to compute *WH* probability:

$$D(\vec{x}) = \frac{P_{WH}(\vec{x})}{P_{WH}(\vec{x}) + \sum_{i} c_{i} P_{B,i}(\vec{x})}$$

- Code imported from single top analysis.
  - Selections still to be optimized for *WH*.
- $900 \text{ pb}^{-1}$  analyzed.
- Around  $2\sigma$  excess of events in double tags.
  - Low statistics.
  - Not seen for ST.



## WH Cross Section Limit



- Dominant syst. uncertainties JES, b-tagging and W+h.f. content.
- Updated result using  $1.5 \text{ fb}^{-1}$  and NN discriminant for LP07.



## $ZH \rightarrow \ell\ell bb$ Analysis

- ZH with  $Z \rightarrow \ell^+ \ell^-$  is one of the more sensitive channels.
- Small production rate,  $\sigma(ZH) \times Br(H \rightarrow b\bar{b}) = 0.085\text{-}0.02 \text{ pb.}$
- 920 (840)  $\mathrm{pb}^{-1}$  of data analyzed in the ee ( $\mu\mu$ ) channel.
- Event Selections:
  - At least two jets with  $p_T > 15~{\rm GeV}$  and  $|\eta| < 2.5.$
  - Two electrons or two muons with  $p_T > 15$  GeV.
  - The  $\ell\ell$  invariant mass within  $65 < M_{\ell\ell} < 115 \text{ GeV}$  (ee) or  $70 < M_{\ell\ell} < 110 \text{ GeV}$  ( $\mu\mu$ ).



- The reconstructed  $Z p_T > 20 \text{ GeV}$  in the  $\mu\mu$  channel.
- A well reconstructed primary vertex with > 2 tracks.
- 2 jets b-tagged with a NN-based tagger (72% b, 6% l-tag eff.).





 $ZH \rightarrow \ell\ell bb$  Data Sample Before *b*-tagging

- Dominant background is Z+jets.
- Simulated Z+jets samples are scaled to the yield in the Z peak.
- Reconstructed Z gives good rejection against multijet events.



- The  $Z p_T$  distribution poorly simulated in the Z+light jets sample.
  - Events are reweighted before
    b-tagging to correct this.
- Reweighted distribution shown.







- Look for mass peak in  $M_{jj}$  after *b*-tagging has been applied.
- For  $m_H = 105-155$  GeV, look for excess in mass window  $m_H - 1.5w < M_{jj} < m_H + 1.5w$  (ee)  $m_H - 1w < M_{jj} < m_H + 2w$  ( $\mu\mu$ ) where w is exp. width of  $M_{jj}$ .



- Dominant syst. uncertainties:
  - Jet energy scale.
  - *b*-tagging efficiency.
  - Z+heavy flavor cross sections.
- Work ongoing to update the result using a NN discriminant.



## $ZH \rightarrow \nu\nu bb$ Analysis

- $BR(Z \rightarrow \nu\nu) \approx 20\%$  in contrast with  $BR(Z \rightarrow ee/\mu\mu) \approx 3.34\%$ .
- No visible leptons to trigger on, also harder to reject multijet events.
- $930 \text{ pb}^{-1}$  of data analyzed.
- Event Selections:
  - At least two jets with  $p_T > 20 \text{ GeV}$  and  $|\eta| < 2.5$ .
  - No isolated leptons.
  - $\Delta \phi(jet_1, jet_2) < 165^{\circ}$ .

  - $H_T < 240 \text{ GeV}.$
  - A well reconstructed primary vertex with > 2 tracks.



- One tight NN *b*-tagged jet (43% b, 0.3% l-tag eff.).
- One loose NN *b*-tagged jet (72% *b*, 6% *l*-tag eff.).







- Expect 1.4 ZH events after b-tagging with an expected background of 63.3 events.
- Limit on  $\sigma(ZH) \times BR(H \rightarrow b\bar{b})$ extracted from the the  $M_{jj}$ distribution.



- Limit ranges from 2.7 to 1.6 pb for  $m_H = 105-135$  GeV.
- Overall syst. uncertainty 15% (14%) for signal (background).
- Expect updated result using  $1.5 \ {\rm fb}^{-1}$  for the LP07 conference.





## **Conclusions and Outlook**

• Limits on the  $\sigma(VH) \times Br(H \to b\bar{b})$  production rate for  $m_H = 115$  GeV:

| Channel ( $\mathcal{L} \approx 1 \; \mathrm{fb}^{-1}$ ) | Exp. Limit | Obs. Limit | SM Exp. |
|---------------------------------------------------------|------------|------------|---------|
| WH cut based                                            | 1.1        | 1.3        | 0.13    |
| WH ME discriminant                                      | 1.2        | 1.7        | 0.13    |
| $Z(\to \ell\ell)H$                                      | 2.8        | 2.7        | 0.08    |
| $Z(\rightarrow \nu \nu)H$                               | 1.9        | 2.5        | 0.08    |

- Expect updated results with  $1-1.5 \text{ pb}^{-1}$  for LP07. Besides increased data set, several improvements are envisioned for these analyses:
  - Trigger selections, NN, event selections,  $WH \rightarrow WWW \dots$
- Combined with CDF, we will soon start probing the expected standard model production rates. Stay tuned!