Standard Model Higgs Boson Searches at ATLAS

Stefano Rosati INFN Roma On behalf of the ATLAS collaboration

<u>Outline</u>

- Introduction
 - Higgs phenomenology, production and decay modes at LHC
- The ATLAS experiment
 - Main design characteristics
- Standard Model Higgs Searches (a selection of channels)
 - gg-fusion production
 - **H**→γγ
 - $H \rightarrow ZZ^* \rightarrow 4$ leptons
 - $H \rightarrow WW \rightarrow I_V I_V$
 - Vector Boson Fusion production
 - Η→ττ
 - H→WW
 - ttH (H→bb)
- Expected significances

LHC conditions

- First pp collisions at √s=14 TeV from summer 2008
- Foreseen luminosity:
 - For 2008: L < 10^{33} cm⁻² s⁻¹, Integrated L up to 1 fb⁻¹
 - For 2009: $L = 1-2 \ 10^{33} \ cm^{-2} \ s^{-1}$, Integrated $L < 10 \ fb^{-1}$ (low-luminosity phase)
 - 30 fb⁻¹ between 2008 and 2010/2011
 - ~10³⁴ cm⁻²s⁻¹, high-luminosity phase
 - ~300 fb⁻¹ by 2014/2015
- Pile-up:
 - ~2 (low luminosity) or 20 (high luminosity) pp minimum bias interactions per bunch crossing (25 ns)
- Experiment trigger to go from 40 MHz bunch crossing to the ~200 Hz to disk for offline analysis

20/07/2007

S. Rosati - EPS 2007

The ATLAS Experiment at LHC

Inner Detector: solenoidal field B=2T, (Pixel+Silicon strips+ transition radiation tracker)

> Muon Spectrometer: precision tracking drift chambers and trigger chambers in air core toroid, $\langle B \rangle = 0.6T$, good standalone performance at high p_T ~10% resolution at 1 TeV

Hadronic calorimeters: (Fe scint Cu-LAr) $\sigma/E\sim50\%/\sqrt{E+0.03}$ Jet, ETmiss measurements

 Performance assessment also from combined test beam data of all subdetectors integrated

S. Rosati - EPS 2007

- γ direction from primary vertex position
- Low luminosity (2•10³³ cm⁻² s⁻¹)
 - Z of primary vertex from ID tracks (σ =40 μm)
- High luminosity $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$
 - Photons direction obtained with calorimeter information alone
- Fine calo segmentation for π^0 rejection
- **Recovery of conversions**
 - ~30% of photons convert in the tracker
 - Exp. Significances (30 fb⁻¹): TDR(LO): 3.9 new(NLO): 6.3
 - ~30-40% improvement expected from likelihood analysis (p_T, angular distributions)

1.5

1-

Mass (GeV)

$H \rightarrow ZZ^* \rightarrow 4$ leptons

- Key point are good e/μ identification efficiency and energy resolution
- Mass resolution from ~1.6 to ~2.0 GeV
- Irreducible background: $ZZ^*/\gamma^* \rightarrow 4$ leptons
 - qq annihilation known to NLO
 - − Add ~20% to account for $gg \rightarrow ZZ$
- Reducible backgrounds (reject through lepton isol
 - Zbb \rightarrow 4leptons: typical rejection ~O(10³)
 - tt→4leptons
- ZZ background dominant after selection
- Background shapes from data (reduce PDF and luminosity uncertainties

- E.g. $\sigma_{ZZ \rightarrow 4I} / \sigma_{Z \rightarrow 2I}$

- Mass peak can be reconstructed:
 - background normalization from sidebands
- Clean channel (but low statistics)

$\underline{\mathsf{H}} \rightarrow \mathsf{WW} \rightarrow \mathsf{I}_{\mathsf{V}} \mathsf{I}_{\mathsf{V}}$

- Inclusive H→WW
 - No mass peak:
 - background shape knowledge important
 - Leptons spin are anti-correlated
- Backgrounds:
 - tt, tWb: rejected through jet-veto
 - WW,WZ,ZZ: rejected trough reconstruction of the event kinematics
- Main interest is near M_H~160 GeV (BR H→WW 95%)
 - Sensitivity in the lower mass region can be extended looking at VBF production

Vector Boson Fusion

- Two tagging jets in the forward region
 - large separation in η
 - jets down to 1° from the beampipe
- No color exchange between quarks
 no jet radiation in central region
- Higgs decay products in the central region
- Powerful background suppression
- Smaller K-factors than for gg-fusion

 Second largest production channel (σ~20% of gg-fusion)

S. Rosati - EPS 2007

<u>VBF, H $\rightarrow \tau \tau$ </u>

<u>VBF, H→WW</u>

- Relevant for MH from ~130 GeV to ~190 GeV
- Main backgrounds tt+jets, W(Z)+jets, WW(ZZ)+jets, QCD
- WW→Ivjj
 - Significance 4.6 at M_H =160 GeV for 30 fb⁻¹
- WW \rightarrow IvIv : no mass peak

 - Significance > 5 for MH 125-190 GeV for 30 fb⁻¹

<u>ttH, H→bb</u>

- Potential discovery channel for light Higgs
- Look at semileptonic final states (trigger)
 - ≥ 6 Jets, ≥ 4 Jets, b-tagging
 - Isolated lepton
 - Missing energy
- Reducible background
 - tt (+jj)
 - Larger background
 - Relies strongly on b-tagging
 - WWbbjj, W+6j
 - Reconstruct tt
- Irreducible background
 - ttbb
 - Different kinematics w.r.t. signal
 - Multivariate analysis for discrimination

Expected significances

- Using LO cross sections
- For M_H just above the LEP exclusion limit several channels can be combined
- In principle, already a good discovery potential with 10 fb⁻¹
- Provided detector performance and background systematics are under control
- For M_H>200 GeV
 H→ZZ→4I is the "golden" channel

<u>Conclusions</u>

- Many channels sensitive to SM Higgs discovery have been studied in detail
- Sensitivity to the SM Higgs already good with 10 fb-1
- Good understanding of the detector necessary to assess
 performance from data
- Understand background shapes
- Early discoveries could be possible in $H \rightarrow VV$ at high mass
- Low mass region more challenging
 - H→gg, ttH, VBF, H→ZZ* are the main channels in the low mass region
- Work in progress right now:
 - Simulation of detector as-installed: including complete material description, misalignments, miscalibrations