vMSM and its experimental tests

F. Bezrukov M. Shaposhnikov

EPFL, Lausanne, Switzerland

Institute for Nuclear Research, Moscow, Russia

The 2007 Europhysics Conference on High Energy Physics

Manchester, England 19-25 July 2007.

Outline

The vMSM Model

- The aim
- Model content and Lagrangian
- Properties

Bounds and Predictions

- Constraints
- Predictions

3 Experimental features

- X-rays observations
- $0\nu\beta\beta$ decay
- Beta decay kinematics
- Heavy sterile neutrinos searches

2 2

Standard Model—Success and Problems

Gauge fields (interactions) – γ , W^{\pm} , Z, gHiggs boson H

Three generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM}) sterile neutrino as WDM
 - Baryon asymmetry leptogenesis via sterile neutrino oscillations

 Dark energy (Ω_Λ) Inflation Gravity

vMSM explains this

and does not explain this

F. Bezrukov, M. Shaposhnikov (EPFL&INR)

vMSM and its experimental tests

HEP2007 3 / 23

▲ 글 ▶ _ 글| 글

Standard Model—Success and Problems

Gauge fields (interactions) – γ , W^{\pm} , Z, gHiggs boson H

Three generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM}) sterile neutrino as WDM
 - Baryon asymmetry leptogenesis via sterile neutrino oscillations
 - vMSM explains this

 Dark energy (Ω_Λ) Inflation Gravity

and does not explain this

▲ 글 ▶ _ 글| 글

Standard Model—Success and Problems

Gauge fields (interactions) – γ , W^{\pm} , Z, gHiggs boson H

Three generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations
 - Dark matter (Ω_{DM}) sterile neutrino as WDM
 - Baryon asymmetry leptogenesis via sterile neutrino oscillations
 - vMSM explains this

 Dark energy (Ω_Λ) Inflation Gravity

and does not explain this

vMSM Lagrangian

Most general renormalizable Lagrangian for 3 additional right-handed neutrinos N_l

$$\mathscr{L}_{vMSM} = \mathscr{L}_{MSM} + \overline{N}_I i \partial N_I - f_{I\alpha} H \overline{N}_I L_{\alpha} - \frac{M_I}{2} \overline{N}_I^c N_I + \text{h.c.}$$

Extra coupling constants:

- 3 Majorana masses M_i
- 15 new Yukawa couplings (Dirac mass matrix $M^D = f \langle H \rangle$ has 3 Dirac masses, 6 mixing angles and 6 CP-violating phases)

18 new parameters in total

PLB 631 (2005) 151, T.Asaka, S.Blanchet, M.Shaposhnikov PLB 620 (2005) 17, T.Asaka, M.Shaposhnikov

- ▲ 문 ▶ - 문 백

v masses and mixings

 $M_I \gg M^D$ — "seesaw" mechanism is working:

3 heavy neutrinos with masses M_l

Light neutrino masses
$$M^{\nu} = -(M^D)^T \frac{1}{M_{\nu}} M^D$$

$$U^{T}M^{v}U = \begin{pmatrix} m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3} \end{pmatrix}$$

Mixings: flavor state $v_{\alpha} = U_{\alpha i} v_i + \Theta_{\alpha I} N_I^c$

Active-sterile mixings

$$\Theta_{lpha l} = rac{(M^D)^{\dagger}_{lpha l}}{M_l} \ll 1$$

F. Bezrukov, M. Shaposhnikov (EPFL&INR)

vMSM and its experimental tests

Properties

The spectrum of vMSM

DM keV neutrino constraints

N₁ with the keV scale mass provides the Warm Dark Matter

Mass bounds

- Tremaine-Gunn bound $M_1 \gtrsim 0.3$ keV
- Lyman- α bound $M_1 \gtrsim$ 11.6 keV or 8 keV

Mixing angle bound

X-ray observation

Production mechanism

- Dodelson-Widrow (thermal) scenario (ruled out)
- Primordial abundance physics at higher energies
 - Entropy production
 - Lepton asymmetries
 - Production from inflaton decay
 - etc.

Baryon Asymmetry

Baryogenesis via Leptogenesis (using heavier sterile N_2 and N_3)

- Generation of lepton asymmetry in active neutrino sector via CP-violating neutrino oscillations
- Conversion of lepton asymmetry to baryon asymmetry by sphaleron transformations, conserving B+L

$$\frac{n_B}{s} = 2 \times 10^{-10} \delta_{CP} \left(\frac{10^{-6}}{\Delta M_{32}^2 / M_3^2} \right)^{\frac{2}{3}} \left(\frac{M_3}{10 \text{ GeV}} \right)^{\frac{5}{3}}$$

and $M_{2,3} \sim 10$ GeV. δ_{CP} describes CP in sterile sector. In Universe: $\frac{n_B}{s} \simeq (8.8 \div 9.8) \times 10^{-11}$

• Should not thermalize before sphaleron processes stop: $\Theta_{2,3} < 2\kappa \times 10^{-8} \left(\frac{\text{GeV}}{M_{2,3}}\right)^2$ ($\kappa \simeq 1(2)$ for normal(inverted) hierarchy)

T. Asaka, M. Shaposhnikov, 2005

Predictions

Active neutrino masses - prediction!

Are any experiments possible?

★ 글 ▶ 글|님

F. Bezrukov, M. Shaposhnikov (EPFL&INR) vMSM and its experimental tests

HEP2007 10 / 23

X-ray observations

• Second main *N*₁ decay mode is the two particle radiative decay:

$$\Gamma(N_1 \to v + \gamma) = 1.38 \times 10^{-22} \sin^2(2\Theta_1) \left(\frac{M_1}{1 \text{ keV}}\right)^5 \text{s}^{-1}$$

- X-ray line with $E = M_1/2$ is emitted from the Dark Matter halos
- Knowing the DM density it is possible to constraint the mixing angle from the search for such line
- Existing experiments like XMM-Newton, HEAO provide the stringent bound on the mixing angle Θ_1
- Dedicated experiments with good energy resolutions and not necessarily good angular resolution are needed!

M.Boyarsky, O.Ruchaysky, M.Shaposhnikov, 2006

▲ 글 ▶ _ 글| 글

X-ray observations

() >) ≥ | ≥

$0\nu\beta\beta$ effective Majorana mass

• contribution from N_1 is negligible $|M_1 \Theta_{a1}^2| \le 10^{-5} \text{ eV}$ • For N₁ coupled with heavier active neutrinos its contribution is

$$m_{ee} < \left| \sum_{i} m_i V_{ei}^2 \right|$$

F. Bezrukov, 2006

F. Bezrukov, M. Shaposhnikov (EPFL&INR)

▶ Ξ[a]

$0v\beta\beta$ effective Majorana mass

• contribution from N_1 is negligible $|M_1 \Theta_{e1}^2| \le 10^{-5} \text{ eV}$

• For *N*₁ coupled with heavier active neutrinos its contribution is always negative

$$m_{ee} < \left| \sum_{i} m_i V_{ei}^2 \right|$$

smaller prediction

F. Bezrukov, 2006

F. Bezrukov, M. Shaposhnikov (EPFL&INR)

 $0v\beta\beta$ decay

$0v\beta\beta$ effective Majorana mass

- contribution from N_1 is negligible $|M_1 \Theta_{e1}^2| \le 10^{-5} \text{ eV}$
- For N₁ coupled with heavier active neutrinos its contribution is always negative

$$m_{ee} < \left| \sum_{i} m_i V_{ei}^2 \right|$$

smaller prediction

F. Bezrukov, 2006

Possibilities of sterile neutrino search

Creation in the lab without subsequent detection

Decay kinematics
 Partial kinematics kink search in electron beta decay spectrum.
 Extremely large statistics to see the effect (√N statistical error)
 Excellent theoretical knowledge of the decay spectrum is needed (c.f. 17 keV neutrino "discovery")
 Not working

Full kinematics event-by-event mass measurement May work

▲ 글 ▶ _글(글

Beta decay kinematics

Neutrino mass is reconstructed from observed momenta

$$m_v^2 = (Q - E_p^{\rm kin} - E_e^{\rm kin})^2 - (\mathbf{p} + \mathbf{k})^2$$

For ³*H*: Q = 18.591 keV

- Typical ion energy $E_{\rho}^{kin}\sim 1$ eV or $|\bm{p}|\sim 100~keV \Rightarrow$ speed $v\sim 10^4 m/s$
- Typical electron energy $E_e^{\rm kin} \sim$ 10 keV

Time of flight measurement of ion momenta!

F. Bezrukov, M. Shaposhnikov, 2007

COLTRIMS setup

Cold-Target Recoil-Ion-Momentum Spectroscopy

() >) ≥ | ≥

Optimistic prospects

(3) 311

Heavy *N* mixing angle constraints

Baryon asymmetry constraint:
$$\Theta_{2,3} < 2\kappa \times 10^{-8} \left(\frac{\text{GeV}}{M_{2,3}}\right)^2$$

BBN bound:
$$\tau_{N_{2,3}} < 0.1$$
 s

CERN PS191 bound

D.Gorbunov, M.Shaposhnikov, 2007

- ▲ 문 ▶ - 문 남

K decays

$Br(K \rightarrow eN_l)$ solid line; $Br(K \rightarrow \mu N_l)$ dashed line;

N decays

Number of events in 5 m long detector

Conclusions

- vMSM the simplest Standard Model extension with right handed neutrinos provides keV neutrino as a WDM candidate, predicts the mass of lightest active neutrino to be very small, provides mechanism for baryon asymmetry generation
- Possible searches for Dark Matter keV sterile neutrino
 - X-ray observations indirect evidence
 - $0v\beta\beta$ decay may constraint the model
 - Full kinematics measurement of beta decay in the laboratory
- Possible searches for "heavy" sterile neutrinos responsible for baryogenesis
 - K decays
 - sterile neutrino decays searches

Surely constrains the model for $M_N < M_K$.

▲ 글 ▶ _ 글| 글

Conclusions

Conclusions

Experiments are possible!

★ 글 ▶ 글|님

