Beyond the Standard Model Searches

- Model-independent Searches
- Supersymmetry Searches
- Beyond Supersymmetry
- Conclusions

University of California, Berkeley and Lawrence Berkeley National Laboratory EPS 2007, Manchester, July 2007

49 Parallel Session Talks

- Very busy session with large attendence:
 - 25 experimental talks
 - 5 HERA
 - 9 Tevatron
 - 7 LHC (see talk by O. Buchmüller)
 - 2 Belle/BaBar
 - 1 NA48

Lepton Flavor Violation
Joint Session with B Physics

- 24 theory talks (see talk by G. Giudice)
- Conveners: Volker Büscher, Jose Espinosa, Emanuelle Perez
- Focus on results since ICHEP'06
 - Apologies for not being able to cover all the results!Many thanks to: H. Abramowicz, C. Diaconu,

Y. Gerstein, J.-F. Grivaz, C. Hays

The Standard Model and the Standard Questions We Have

- What is the origin of electroweak symmetry breaking?
 - Is there a Higgs boson?
 - WHERE IS IT?
- What is the Dark Matter?
 - Is it produced at colliders?
- Is Nature supersymmetric?
- Are there new dimensions of space?
- Is there anything maybe that nobody has thought of and no one has looked for and we missed it?

Hierarchy problem:

-New physics should be at the TeV scale!

High Energy Colliders: Tevatron and HERA

Tevatron Run II $\int Ldt = 3 \text{ fb}^{-1}/\exp(1)$

HERA Run I+II $\int Ldt = 0.5 \text{ fb}^{-1}/\text{exp}$

Model-independent Searches

HERA "Isolated Leptons"

 Longstanding excess from HERA Run I e⁺p data (∫Ldt~100 pb⁻¹):

e⁺p data	H1	ZEUS
P _T ^X >0	19/14.4	36/32.5
P _⊤ ×>25 GeV	11/3.4	7/5.7

- Main SM contribution from W production
- Excess concentrated at high p_T^X and only present in H1
- ZEUS and H1 had quite different selection cuts

6

HERA 2 "Isolated Leptons"

- Use full HERA 2 luminosity
 - Just 3 weeks after end of HERA!
- H1 and ZEUS settled on a common set of cuts

e⁺p data	H1	ZEUS	H1+ZEUS
P _T ^x >25 GeV	17/7.1±0.9	6/7.5 ±1.1	23/14.6±1.9

- H1 still sees excess (~3σ) and ZEUS does not
 - Consistency of experiments: 2σ
 - Combined significance of excess 1.8σ
 - Excess will remain unresolved
 - Unless other collider sees something...
 - On the bright side there is now a nice sample of 87 W candidates in e[±]p data

Flavor Changing Neutral Currents

- Possible explanation:
 - ep →t+X → Ivb+X
 - Requires flavor-changing neutral current
- Optimized selection using likelihood discriminant

Events

- Data seem not consistent with this hypothesis
- |κ_{tuγ}|<0.14 at 95% CL

8

FCNC: t→Z+q

- Standard Model predicts:
 - BR(t→Wb) > 99%
 - BR($t \rightarrow qZ$) ≈ O(10⁻¹⁴)
- Select events with 2 leptons and 4 jets:
 - With or without b-tag
 - Use χ^2 estimator to assess kinematic consistency with top production
- Data consistent with background estimate
 - Main background: Z+jets production

Result:

$$\mathcal{B}(t \to Zq) < 10.6\% @ 95\%$$
 C.L.

[talk by A. Harel]

Generic Searches: H1 and CDF

- Compare data to SM in "all" event topologies,
 - e.g.:
 - ee,eμ...eμτγb...

- Data in good agreement with Standard Model in overall event count
 - H1 looked in 99 final states
 - both e⁺p and e⁻p data
 - CDF looked in 344 final states

[talk by A. Schöning]

CDF: Test of distributions

- Analyse ~16500 kinematic distributions using Kolmogorov-Smirnov test
- Some disagreements in kinematic distributions
 - but appears to be due to QCD mismodeling and not due to new physics

Global Search for Excess at high p_T

- Evaluate most discrepant tail/region in ∑p_T distribution
 - H1 uses also inv. Mass of all objects

Found no significant discrepancy

- Excess in most discrepant distribution is not significant
- Only sensitive if new physics is large and at high ∑ p_T:
 - Useful for looking for the unexpected
 - Typically less sensitive than dedicated analysis, e.g. at CDF
 - WZ production:
 - Would need O(10) times more data for 5σ discovery
 - Z' production
 - Would need O(2) times more data for 5σ discovery at ~250 GeV

Supersymmetry

Supersymmetry (SUSY)

Standard particles SUSY particles u Н g Higgsino Higgs v. Z v_{μ} Ve W e μ τ G $\widetilde{\mathbf{G}}$ Leptons Sleptons SUSY force Quarks Force particles Squarks particles

- SM particles have supersymmetric partners:
 - Differ by 1/2 unit in spin
 - Sfermions (squarks, selectron, smuon, ...): spin 0
 - **Gauginos** (chargino, neutralino, gluino,...): spin 1/2
- SUSY can solve the fine-tuning problem

Sparticle Spectrum

Typical features:

- Squarks and gluinos heavy
- Sleptons light
- 5 Higgs bosons (in MSSM)
- Charginos and neutralinos light
- Third generation partners lightest (τ , t, b,..)

MSSM Higgs Boson Search

- Minimal Supersymmetric Standard Model:
 - 2 Higgs-Fields: Parameter $tan\beta = \langle H_u \rangle / \langle H_d \rangle$
 - 5 Higgs bosons: h, H, A, H[±]
- Neutral Higgs Boson:
 - Pseudoscalar A
 - Scalar H, h
 - Lightest Higgs (h) very similar to SM

$$\sigma \times BR_{SUSY} = 2 \times \sigma_{SM} \times \frac{\tan \beta^2}{\left(1 + \Delta_b\right)^2} \times \frac{9}{\left[9 + \left(1 + \Delta_b\right)^2\right]}$$

- At high tanß:
 - A is degenerate in mass with either h or H
 - Decay into either $\tau\tau$ or bb for m_A<300 GeV:
 - BR(A →ττ) ≈ 10%, BR(A→ bb) ≈ 90%
 - Cross section enhanced with $tan^2\beta$

•C. Balazs, J.L.Diaz-Cruz, H.J.He, T.Tait and C.P. Yuan, PRD 59, 055016 (1999)
•M.Carena, S.Mrenna and C.Wagner, PRD 60, 075010 (1999)
•M.Carena, S.Mrenna and C.Wagner, PRD 62, 055008 (2000)

[talk by P. Jonsson]

MSSM Higgs Boson Search

M₄ (GeV)

[talk by P. Jonsson]

Lepton Flavor Violation

Squarks and Gluinos

- Squark and Gluino production:
 - Signature: jets and \mathbf{F}_{T}
 - At Tevatron no long cascades to leptons expected:
 - Lepton veto applied
- Analysis optimized depending on mass hierarchy

000

000

jet

 $m(\tilde{q}) \gg m(\tilde{g}) \ m(\tilde{q}) \approx m(\tilde{g}) \ m(\tilde{q}) << m(\tilde{g})$

000

jet

1et

Supersymmetry Parameter Space

NB: up to 10 GeV differences depending on treatment of theoretical cross section uncertainties

Exclusion of GUT scale parameters

- Nice interplay of hadron colliders and e⁺e⁻ colliders:
 - Similar sensitivity to same high level theory parameters via very different analyses
 - Tevatron is starting to probe beyond LEP in mSUGRA type models

Third Generation Squarks

- The lightest $\widetilde{\mathbf{q}}$'s: $m_{\widetilde{t}_{1,2}}^2 = \frac{1}{2}(m_{\widetilde{t}_L}^2 + m_{\widetilde{t}_R}^2) \mp \frac{1}{2}\sqrt{(m_{\widetilde{t}_L}^2 m_{\widetilde{t}_R}^2)^2 + 4m_t^2(A_t \mu \tan \beta)^2}$ - Due to large SM top mass
- Dedicated searches for stop and sbottom:
 - t̃ → c̃χ⁰₁ and b̃→b̃χ⁰₁
- Signature:
 - Two heavy flavor jets + large missing E_T

H_T	Р	# observed	#Expected
> 100	< 260	83	$81.9 \pm 4.0^{+13.9}_{-14.1}$
> 140	< 300	57	$57.1 \pm 3.1^{+8.6}_{-8.6}$
> 140	< 320	66	$64.2 \pm 3.2^{+9.0}_{-9.1}$

[talk by C. Biscarat]

Balazs, Carena, Wagner: m_{stop} (Ge¹ hep-ph/0403224 140 = 2 TeV LEP Excluded 100 105 $m_{\mu} (GeV) m_{h}^{110} (GeV)$ DØ RunII Preliminary 995 pb1 DØ RunII Preliminary 995 pb1 Data 220 SM MC Data Signal SM MC Signal 300 350 H_T (GeV) 100 150 200 250 50 P80 220 240 260 280 300 320 200 ∆¢(max)+∆¢(min) (degrees) $H_{T} = \sum P_{T}^{jet}$ 22

Stop and Sbottom Mass Exclusion

- Stop masses excluded up to 150 GeV/c²
 - If $m(\tilde{t})$ -m($\tilde{\chi}^0_1$)>60 GeV/c²
- Sbottom masses excluded up to 220 GeV/c² If $m(\widetilde{\chi}^0_1)$ <80 GeV/c²

Charginos and Neutralinos

- Charginos and Neutralinos:
 - Mixed states of SUSY partners of
 - W, Z, γ , Higgs
 - Typically among the lightest SUSY particles
- Challenges:
 - Maximize lepton acceptance!
 - Large fraction of events contain τ 's
- Selection:
 - Isolated leptons:
 - 3 leptons (e,µ or "track")
 - 2 leptons of same electric charge
 - Missing E_T

Trileptons: Result

CDF Expected Analysis Data background 1.3 ± 0.3 μll 1 0.8 ± 0.4 ell 0 1.0±0.3 ee + track 3 0.4±0.1 μµΙ 1 3.0 ± 0.5 e[±]e[±] 4 4.0±0.6 $e^{\pm}\mu^{\pm}$ 8 $\mu^{\pm}\mu^{\pm}$ 0.9 ± 0.1 1

Main backgrounds:

- –Instrumental: Z+γ, Z+jet
- -Genuine: WZ/γ*

[talk by H. Fox]

Constraints on SUSY

Strongly model-dependent limits:

- No-mix scenario:
 - CDF m($\widetilde{\chi^{\pm}}_1$)>129 GeV/c², DØ: m($\widetilde{\chi^{\pm}}_1$)>140 GeV/c²
- Starting to probe mSUGRA
- No sensitivity at large m₀ yet (i.e. if sleptons heavy)
- Sensitive up to m(χ̃[±]₁)~200 GeV with full Run 2 luminosity

Gauge Mediated SUSY Breaking

- Lightest SUSY particle is gravitino:
 - Mass ~ 1 keV
 - Next-to-lightest particle is
 - neutralino $\rightarrow \gamma G$
 - Reaction: $p\overline{p} \rightarrow XX \rightarrow \gamma\gamma GG$
- Cleanest signature:
 - -2 photons+missing E_T

	DØ		CDF	
	E _T >30	E _T >60	E _T >30	E _T >50
BG	9.8 ± 1.1	1.5±0.4	19.5 ±2.5	1.6 ± 0.3
Data	16	4	22	4

DØ Data exclude chargino masses below 231 GeV

Long-lived particles

- Particles can be stable or longlived if decay forbidden due to
 - Conservation law
 - Kinematically disfavored
- Example Models:
 - Split-SUSY:
 - gluino
 - GMSB, AMSB:
 - stau, stop, chargino
- In the detector
 - Decay after some lifetime
 - Get stuck in detector and decay later
 - Escape detector completely

CHAMPS: Charged Massive Stable Particles

- Scenario:
 - Escape detector completely

ely
$$_{m=p\sqrt{1/\beta^2-1}}$$

- Experimentally:
 - Search for "muons" that travel at $\beta <<1$
 - CDF: Time-Of-Flight detector and drift chamber
 - D0: muon system
 - Reconstruct mass from p and β
- Cross Section Limits
 - (for p_T >40 GeV and $|\eta|$ <1, 0.4< β <0.9)
 - Weakly interacting $(\widetilde{\tau}, \widetilde{\chi}_1^{\pm})$:
 - σ<10 fb at 95% CL
 - Strongly interacting (stop):
 - σ <48 fb at 95% CL
 - Assumes stop stays charged up to muon system with P=43±7%

Stable particles: "stopped Gluinos"

- Particles can be rather stable:
 - Lifetime ~hours
 - Interact in calorimeter and decay at some later time
 - Split-SUSY:
 - m(q)>10² TeV, m(q)~TeV
 - Gluino long-lived
- Trigger on events with
 - "no interaction" but jet activity
- Main background:
 - Cosmic ray and beam-halo muons
- Result: m(g)>270 GeV @95%CL

for $\tau(\widetilde{g})$ <3h, $\sigma(R_m \rightarrow R_b)$ =3mb, BR($\widetilde{g} \rightarrow \widetilde{g\chi_1^0}$)=100%, m($\widetilde{\chi_1^0}$)=50 GeV

[A. Arvanitaki et al.: hep-ph/0506242] 30

Beyond SUSY

What else could be there?

- Strong theoretical desire for SUSY to be true
 - particularly due to the lack of SUSY observation...
- There could be many other theories/particles, e.g.:
 - Extra gauge groups: Z', W'
 - Occur naturally in GUT scale theories
 - Extra spatial dimensions:
 - "Solve" hierarchy problem by making gravity strong at TeV scale

– Compositeness:

• excited leptons, leptoquarks

- Preons:

- We have always found smaller things before
 - atom->proton->quarks->preons ?

- ...

High Mass Production

$$\mathcal{L}_{CI} = \pm \frac{4\pi}{\Lambda^2} (f\gamma^\mu f) (f'\gamma^\mu f')$$

Probes new resonances: Z', W', Extra Dimensions

Probes fermion substructure

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} = \frac{\mathrm{d}\sigma^{\mathrm{SM}}}{\mathrm{d}Q^2} f_e^2(Q^2) f_q^2(Q^2)$$

where $f(Q^2) = 1 - \frac{\langle r^2 \rangle}{6} Q^2$

High Mass Production

 Excellent agreement with prediction over many orders of magnitude

Contact Interactions + Quark Substructure

No indication of substructure or contact interactions

Contact Interaction: eeqq Λ Constraints in TeV

	constructive		destructive	
	ZEUS	DØ	ZEUS	DØ
LL	4.2	3.6	4.2	6.2
RL	3.6	4.3	2.3	5.0
VV	6.3	4.9	7.5	9.1

[talk by R. Placakyte]

Excited Leptons

- Excited leptons appear in compositeness models
- Decay modes:
 - − $f^* \rightarrow f'\gamma$, $f^* \rightarrow f'W$, $f^* \rightarrow f'Z$
- Search for peak in invariant mass spectra:
 - E.g. $e^* \rightarrow e\gamma$, $e^* \rightarrow eZ$, $v^* \rightarrow eW$ etc.

[talk by E. Sauvan]

e****

Excited Leptons

Gauge Model:

Contact Interaction Model:

• Compositness scale Λ , relative strengh to γ ,Z,g: f, f', fs

- Dielectron mass spectrum and diphoton mass distributions
 - Data agree well with Standard Model spectrum
 - No evidence for mass peak or deviation in tail

[talk by S. Kermiche]

High Mass e^+e^- and $\gamma\gamma$

- Resonance in diphoton or dielectron mass spectrum predicted in
 - Z' models (ee only): Spin 1
 - Randall-Sundrum graviton (ee and $\gamma\gamma$): Spin 2

High Mass $t\overline{t}$ Production

• Recent interest in KKG $\rightarrow t\overline{t}$

- Good discovery potential at LHC
 - Agashe et al.: hep-ph/061215
 - Lillie, Randall, Wang: hep-ph/0701166
- CDF analysis
 - Excludes M<720 GeV in topcolor models
 - Reinterpretation in KKG models ongoing

- W' boson searched for in tail of transverse mass distribution
- New DØ limit: m(W') > 965 GeV at 95% CL

W′→tb

- Complementary:
 - W´→ev probes lefthanded current
 - W´→tb probes left- and righthanded current
- Use Invariant mass of
 - W(→Iv)+2 jets (≥1 b-tag)
 - Selection as in CDF single top analysis (see T. Wyatt's talk)
- Mass limit

– M(W')>760 GeV for g'=g_{SM}

Conclusions

Huge efforts for finding physics beyond the Standard Model continue

- Tevatron presented many analyses with 1 fb⁻¹
 - Another 2 fb⁻¹ are on tape and a total of 8 fb⁻¹ is expected by 2009
- HERA presented first results using their full luminosity
- Interesting interplay with low-energy experiments
 BaBar, Belle, KLOE, NA48..

No signs of new physics found

- Stronger and stronger constraints on new physics
- No excesses larger than 2σ

Current experiments continue to improve sensitivity and LHC is starting next year...

It has been a rainy decade for searches

Let's hope the next decade is sunnier... starting with EPS 2009

$B_s \rightarrow \mu^+ \mu^-$ Branching Ratio

Multi-Leptons at HERA

- Inclusive searches for
 - 2 or 3 leptons
 - Sensitive to $H^{\pm\pm}$ production
- Good agreement with SM
 - Also in $e\mu,\mu\mu$, $e\mu\mu$
 - Limits derived on H^{±±} production

 $M_{ee}>100 \ GeV$ H1: e[±]pZEUS: e[±]p459 pb-1432 pb⁻¹ee351.5±0.34.3±1.1eee310.9±0.21.1^{+0.5}-0.1

CDF Photon Events

- CDF Run 1: L~100 pb⁻¹
- One spectacular event:

 - SM expectation 10⁻⁶
 - Inspired GMSB SUSY models:
 - Selectron pair production? [S. Ambriosano et al.]
- Excess in $\mu\gamma E_T$ events
 - N_{Data}=16
 - N_{SM}= 7.6+-0.7
 - Could also be explained in GMSB with R-parity violation
 - Resonant smuon production? [B. Allanach et al.]
- Now follow up with 10 times more data

Follow up on Run1 CDF events

 $Z\gamma\gamma$

Observed

in Data

- analysis
 - Designed to use same cuts as Run 1
 - $-N_{\text{Data}}=67$
 - $-N_{SM} = 55.7 \pm 7.1$
- eeγγ_F:
 - No event observed

[talk by S.-S. Yu.]

0

Run 1 excesses not confirmed by Run 2 data

0

0

Search in yy+MET Channel

Jet