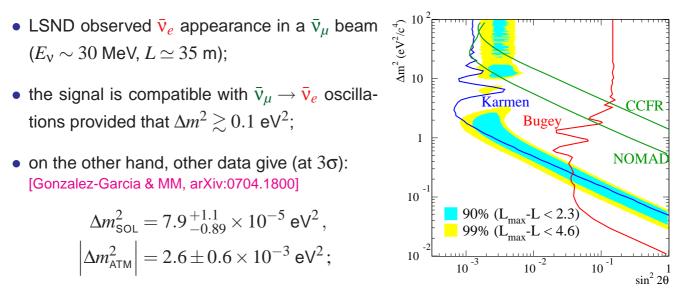
Sterile neutrino oscillations after first MiniBooNE results

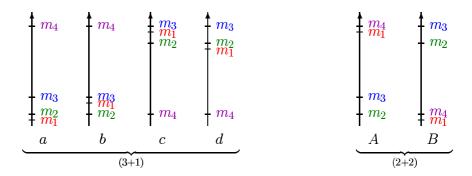
Michele Maltoni

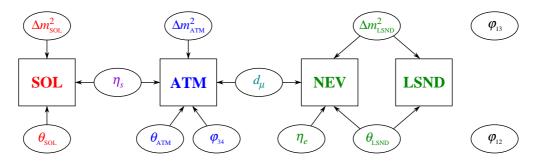

Departamento de Física Teórica & Instituto de Física Teórica Universidad Autónoma de Madrid

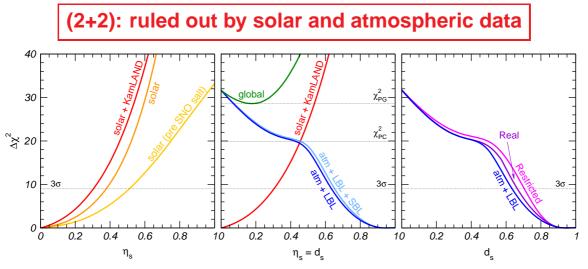
HEP 2007, Manchester, England – July 20, 2007

- I. Models with one extra sterile neutrino
- II. Models with two or more sterile neutrinos

Conclusions


The LSND problem

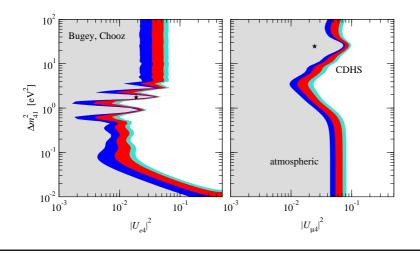

- in order to explain LSND with <u>mass-induced neutrino oscillations</u> one needs <u>at least one</u> more neutrino mass eigenstate;
- WARNING: having enough Δm^2 is not enough. To make sure that the model works, one has to check explicitly that all the experiments can be fitted simultaneously.

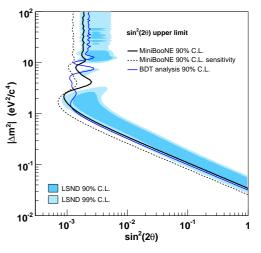

Four neutrino mass models

• Approximation: $\Delta m^2_{SOL} \ll \Delta m^2_{ATM} \ll \Delta m^2_{LSND} \Rightarrow 6$ different mass schemes:

• Total: 3 Δm^2 , 6 angles, 3 phases. Different set of experimental data *partially decouple*:

in (2+2) models, the fractions of ν_s in solar (η_s) and atmospheric (1 − d_s) oscillations add to one ⇒ η_s = d_s;


- 3σ allowed regions $\eta_s \leq 0.31$ (solar) and $d_s \geq 0.63$ (atmospheric) do not overlap; superposition occurs only above 4.5σ ($\chi^2_{PC} = 19.9$);
- the χ^2 increase due to the combination of solar and atmospheric data is $\chi^2_{PG} = 28.6$ (1 dof), corresponding to a PG = 9×10^{-8} . [MM & Schwetz, PRD 68 (2003) 033020, hep-ph/0304176]


(3+1): tension between LSND and short-baseline data

In (3+1) schemes the SBL appearance probability is effectively 2v oscillations:

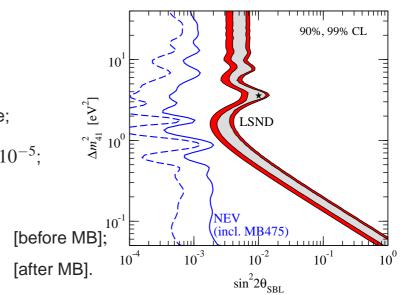
$$P_{\mu e} = \sin^2 2\theta \sin^2 \frac{\Delta m_{41}^2 L}{4E}, \qquad \sin^2 2\theta = 4 |U_{e4}|^2 |U_{\mu 4}|^2;$$

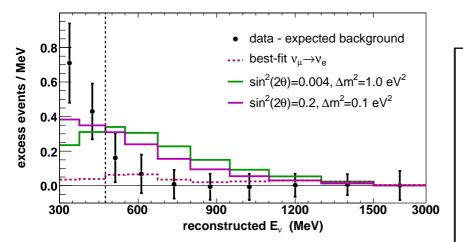
- the MiniBooNE/LSND 2ν inconsistency fully applies;
- *disappearance* exper. bound $|U_{e4}|^2$ and $|U_{\mu4}|^2$;

- LSND is in conflict:
- with other *appearance* exp.
 (Karmen, Nomad, MB);
- with *disappearance* experiments.

(3+1): ruled out by short-baseline data

- Three-fold disagreement:
 - LSND claims a signal;
 - NEV-APP reject its evidence;
 - NEV-DIS constraint the LSND angle;


• check:
$$\chi^2_{PG} = 24.8$$
 (4 dof) \Rightarrow PG = 6×10^{-5} ;


alternatively: compare LSND and NEV:

 $\chi^2_{PG} = 20.9$ (2 dof) \Rightarrow PG = 3×10^{-5} [before MB]; (incl. MB475) 10^{-4} 10^{-2} 10^{-3} 10^{-1} $\chi^2_{PG} = 24.7$ (2 dof) \Rightarrow PG = 4 $\times 10^{-6}$ [after MB].

Summary of four-neutrino models

- Four-neutrino models cannot explain LSND. This was true even before MB.
- The negative MB result increases the tension in (3+1) models, now almost as bad as (2+2).

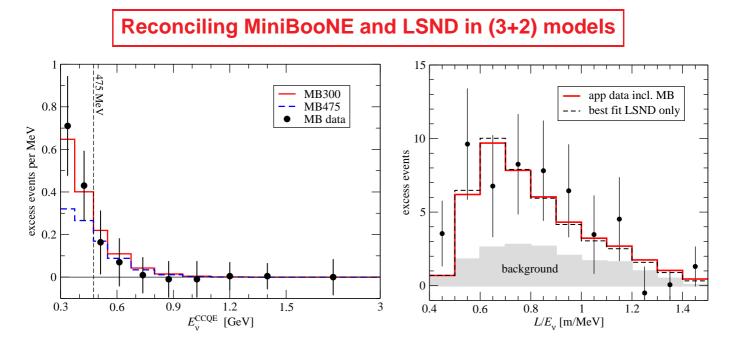
- MiniBooNE observed a 3.6σ excess at low-energy;
- this excess is *incompatible* with 2ν oscillations;
- therefore, data with $E_v^{\rm QE} < 475$ MeV have not been used to check LSND.

The MiniBooNE excess

With the analysis cuts set, a signal-blind test of data-MC agreement in the signal region was performed. The full two-neutrino oscillation fit was done in the range $300 < E_{\mu}^{QE} < 3000$ MeV and, with no information on the fit parameters revealed, the sum of predicted background and simulated best-fit signal was compared to data in several variables, returning only the χ^2 . While agreement was good in most of the comparisons, the E_{vis} spectrum had a χ^2 probability of only 1%. This triggered further investigation of the backgrounds, focusing on the lowest energies where ν_{μ} -induced backgrounds, some of which are difficult to model, are large. As part of this study, one more piece of information from the signal region was released: unsigned bin-by-bin fractional discrepancies in the E_{vis} spectrum. While ambiguous, these reinforced suspicions about the low-energy region. Though we found no specific problems with the background estimates, it was found that raising the minimum E_{μ}^{QE} of the fit region to 475 MeV greatly reduced a number of backgrounds with little impact on the fit's sensitivity to oscillations. We thus performed our oscillation fits in the energy range 475 $< E_{\nu}^{QE} <$ 3000 MeV and opened the full data set.

[MB collaboration, arXiv:0704.1500, pag. 4]

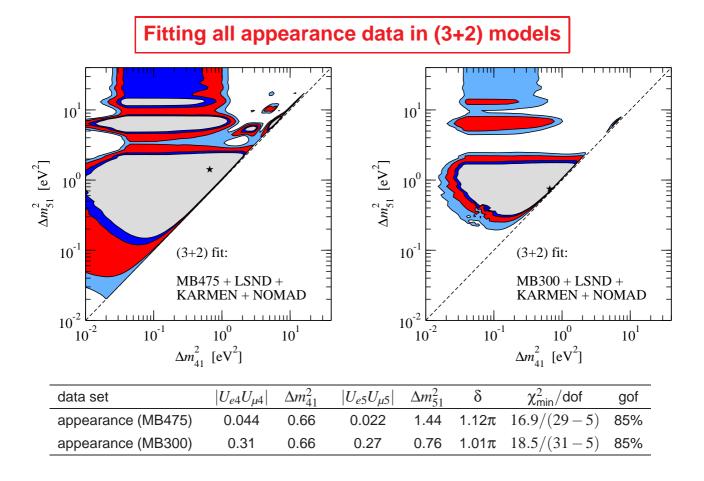
- \Rightarrow Omission of low-energy bins in based on the hypothesis of two-flavor oscillations!
 - From now on: consider both complete (MB300) and reduced (MB475) data sets.


Explaining the MiniBooNE excess with two sterile neutrinos

- With one extra sterile neutrino, m_4 : ∝ 1/E⁴ $P_{\mu e}^{4\nu} = 4|U_{e4}|^2|U_{\mu 4}|^2\sin^2\phi_{41} \quad \text{with} \quad \phi_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4\Gamma};$ 0.015 • for large energy $P_{\mu e}^{4\nu}$ drops as $1/E^2$; however, the low-energy MB excess is much 0.005 sharper ($\sim 1/E^4$); $\propto 1/E^2$ \Rightarrow it is not possible to account for the MB ex-300 600 900 1200 1500 cess with only one extra sterile neutrino.
 - On the other hand, with *two* extra neutrinos, m_4 and m_5 :

 $P_{\mu_{e}}^{5v} = 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}\phi_{41} + 4|U_{e5}|^{2}|U_{\mu5}|^{2}\sin^{2}\phi_{51} + 8|U_{e4}U_{e5}U_{\mu4}U_{\mu5}|\sin\phi_{41}\sin\phi_{51}\cos(\phi_{54} - \delta);$

- terms of order $1/E^2$ cancel if $\delta = \pi$ and $|U_{e4}U_{\mu4}|\Delta m_{41}^2 = |U_{e5}U_{\mu5}|\Delta m_{51}^2$;
- \Rightarrow with two extra sterile states it is possible to fit the MB low-energy excess.


E, [MeV]

• Trick: use the CP phase $\delta = \arg(U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^*)$ to differentiate ν (MB) from $\bar{\nu}$ (LSND):

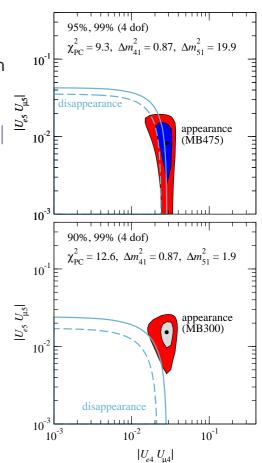
 $P_{\mu e}^{5\nu} = 4|U_{e4}|^2|U_{\mu 4}|^2\sin^2\phi_{41} + 4|U_{e5}|^2|U_{\mu 5}|^2\sin^2\phi_{51} + 8|U_{e4}U_{e5}U_{\mu 4}U_{\mu 5}|\sin\phi_{41}\sin\phi_{51}\cos(\phi_{54} - \delta);$

• note that $\delta = \pi + \epsilon$ and $|U_{e4}U_{\mu4}|\Delta m_{41}^2 \approx |U_{e5}U_{\mu5}|\Delta m_{51}^2$ to suppress MB probability.

Michele Maltoni <michele.maltoni@uam.es>

HEP 2007, MANCHESTER, 20/07/2007

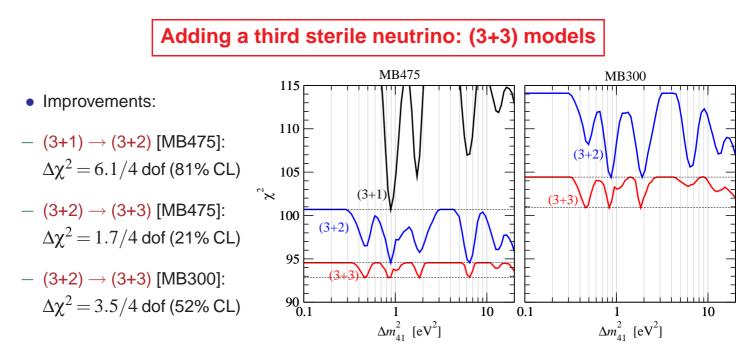
The doom of disappearance data


- As for (3+1) models, disappearance data imply bounds on $|U_{ei}|^2$ and $|U_{\mu i}|^2$ (i = 4, 5);
- these bounds are in conflict with the large values of $|U_{ei}U_{\mu i}|$ required by appearance data;
- again, a tension between APP and DIS arises:

$$\chi^2_{PG} = 17.5 \text{ (4 dof)} \Rightarrow PG = 1.5 \times 10^{-3} \text{ [no MB];}$$

 $\chi^2_{PG} = 17.2 \text{ (4 dof)} \Rightarrow PG = 1.8 \times 10^{-3} \text{ [MB475];}$
 $\chi^2_{PG} = 25.1 \text{ (4 dof)} \Rightarrow PG = 4.8 \times 10^{-5} \text{ [MB300];}$

• alternatively, compare LSND and NEV as in (3+1):


$$\begin{split} \chi^2_{\mathsf{PG}} &= 19.6 \text{ (5 dof)} \ \Rightarrow \ \mathsf{PG} = 1.5 \times 10^{-3} \quad \text{[before MB]}; \\ \chi^2_{\mathsf{PG}} &= 21.2 \text{ (5 dof)} \ \Rightarrow \ \mathsf{PG} = 7.4 \times 10^{-4} \quad \text{[after MB]}. \end{split}$$

 \Rightarrow Conclusion: (3+2) models fail exactly as (3+1) do!

11

Michele Maltoni <michele.maltoni@uam.es>

• (3+3) models do not offer qualitatively new effects with respect to (3+2) models; in particular, the improvement in χ^2 is very modest.

- (3+1) four-neutrino schemes are strongly disfavored because:
 - recent MB data is incompatible with LSND at the 98% CL;
 - the tension between LSND and NEV SBL data becomes more severe due to MB. In particular, there is no overlap of the allowed regions for NEV and LSND at 99% CL, and the PG test implies inconsistency at the level of 4σ ;
 - it is not possible to account for the low energy event excess in MB.
- (3+2) five-neutrino schemes
 - do provide a good fit to LSND and the recent MB data;
 - can account for the low energy event excess in MB;
 - fail to resolve the tension between appearance and disappearance data (according to the PG test at the level of 3σ for MB475 and 4σ for MB300).
- (3+3) <u>six-neutrino</u> schemes do not offer qualitatively new effects. In particular, the global χ^2 improves only marginally with respect to (3+2), and hence, the conflict between appearance and disappearance data remains.