MiniBooNE, Part 2: First Results of the Muon-To-Electron Neutrino Oscillation Search

M. Sorel (IFIC – Valencia U. and CSIC) on behalf of the MiniBooNE Collaboration

EPS HEP 2007, Manchester, July 20th 2007

MiniBooNE Electron Appearance Search

- MiniBooNE initial results:
 - A generic search for an electron neutrino excess (or deficit) in a muon neutrino beam
 - An analysis of the data within a two neutrino, muon-to-electron appearance-only neutrino oscillation context, to test this interpretation of the LSND anomaly
- Energy range for expected oscillation signal events: $300 < E_{\mu} < 1500 \text{ MeV}$
- Two largely independent analyses were performed, differing in reconstruction, particle identification, and oscillation fit procedure details:

 - Track-based (TB) analysisBoosted decision tree (BDT) analysis

• Will mostly discuss TB, chosen as the primary analysis because of slightly better muon-to-electron neutrino appearance sensitivity

This was a blind analysis. The closed box was opened on March 26, 2007. Results released to the public on April 11, 2007.

Selecting v_e CCQE Candidate Events

- Goal: reject final state muons and π^0 's, and enhance CCQE fraction in v_{g} sample
- Each event reconstructed under four hypotheses, returning L_{μ} , L_{e} , L_{π} , m_{μ} :
 - muon 1-ring
 - electron 1-ring
 - 2-ring with fixed invariant mass $m_{\gamma\gamma} = m_{\pi}$
 - unconstrained 2-ring
- Cut on likelihood fit ratios and 2-ring mass value
- Cut values chosen to optimize oscillation sensitivity

EPS HEP 2007

Signal Efficiency and Background Composition

• Signal efficiency: Single subevent,hit-level, fiducial volume, energy threshold cuts + $Log(L_e/L_u)$

+ $Log(L_e/L_\pi)$

+ invariant mass cuts

 \bullet All major backgrounds for the $v_{\rm e}$ appearance search can be constrained / checked from MiniBooNE measurements

```
\begin{array}{c} \mbox{high energy events} \\ \nu_{\mu} \ \mbox{CC QE} \\ \pi^{0} \\ \mbox{high radius events} \\ \pi^{0} \\ \nu_{\mu} \ \mbox{CC QE} \\ \nu_{\mu}^{\mu} \ \mbox{CC QE} \end{array}
```

MiniBooNE Constraints on mis-ID Backgrounds

NC π^{o} background where one photon is not seen:

M. Sorel - IFIC (Valencia U. & CSIC)

EPS HEP 2007

MiniBooNE Constraints on mis-ID Backgrounds

External backgrounds:

- Neutrino beam interacts with material outside detector
- Creates 100-300 MeV photons that come into the tank unvetoed
- Produces e-like events

• Data/MC rate = 0.99 ± 0.15

Dirt(red), Tank(blue), MC(black), Data(dots)

EPS HEP 2007

M. Sorel – IFIC (Valencia U. & CSIC)

MiniBooNE Constraints on Intrinsic Backgrounds

Muon decay v intrinsic background:

1. Measure v_{μ} flux with ~80% pure v_{μ} CCQE sample:

2. Kinematics allows to infer parent π^+ flux and momentum distribution from observed v_{μ} events:

3. Once the pion flux is known, the $\pi^+ \rightarrow \mu^+ \rightarrow v_{\mu}$ decay chain is well constrained

• Use same v_{μ} CCQE sample to determine normalization of predicted signal EPS HEP 2007 M. Sorel – IFIC (Valencia U. & CSIC)

MiniBooNE Constraints on Intrinsic Backgrounds

Kaon decay v intrinsic background:

- At high energies, both $\nu_{_{\mu}}$ and $\nu_{_{e}}\text{-like}$ events are largely due to Kaon decay

• Measure Kaon-induced flux at high energies, where no oscillation events are expected

Use MC to extrapolate to lower energies

Systematic Uncertainties and Oscillation Sensitivity

• Systematic uncertainties in predicting electron candidate events come from the modeling of the beam, neutrino interactions, detector (see B. Roe's talk)

- Start from "first principles" uncertainties from simulation models and measurements external to MiniBooNE
- Obtain better uncertainty estimates from MiniBooNE calibration and neutrino data fits

• For primary TB analysis:

- Statistical uncertainty affects sensitivity most
- Dominant systematics: neutrino cross-section (11 sources), K⁺-induced neutrino flux, and final state interactions
- Detector optical model (OM) systematic uncertainties: smaller impact
- Complementary (BDT) analysis affected by a different stat./syst. uncertainty mix

Neutrino Oscillation Sensitivity

10²

sin²(20) upper limit MiniBooNE has good MiniBooNE 90% C.L. sensitivity sensitivity reach to test ---- BDT analysis 90% C.L. sensitivity 10 the oscillation parameter region allowed by LSND $\Delta m^2 |$ (eV²/c⁴) 10⁻¹ • Two MiniBooNE analyses with comparable oscillation LSND 90% C.L. sensitivity LSND 99% C.L. 10⁻² 10⁻³ 10⁻² 10⁻¹ $sin^2(2\theta)$

Cross-Checks

 Checked simulation, reconstruction, PID, uncertainty predictions on a variety of open data samples and distributions

- Some examples for $\boldsymbol{\nu}_{_{\boldsymbol{o}}}$ selection quantities
- Good agreement found everywhere
 proceed to step-wise box opening

EPS HEP 2007

Electron Neutrino Box Opening Procedure

Step 1: perform fit of E_v distribution of electron candidate events in the $300 < E_v < 3000$ MeV energy range to oscillation hypothesis, where best-fit oscillation signal added to background prediction is unknown. Disclose X^2 values from data/MC comparisons of several diagnostic variables

Step 2: disclose histograms for data/MC comparisons of same diagnostic variables

Step 3: disclose X^2 value for E_v data/MC comparison over oscillation fit range, still retaining blindness to oscillation signal component

Step 4: disclose full information on electron candidate events and oscillation fit results

Progress in a step-wise fashion, with ability to iterate if necessary

 All event selection and oscillation fit procedures were determined before full information on electron candidate events and oscillation fit results was disclosed

Box Opening Step 1: First Try

- Triggered further investigations of background estimates and associated uncertainties, using "sideband" samples
 we found no evidence of a problem
- However, knowing that:
 - backgrounds predicted to rise at low energy
 - studies focused suspicions in low-energy region
 - choice has negligible impact on oscillation sensitivity

-> we decided to look for oscillations (and diagnostic X^2) in the reduced (475 < E₁ < 3000 MeV) range, and report events over full (300 < E₁ < 3000 MeV) one

Box Opening Steps 1 (Again), 2, and 3

• **Step 1:** X² probability for data/MC comparisons on 12 diagnostic variables:

event/track position, direction, visible energy, and PID quantities

Comparisons look good

• **Step 2:** disclose histograms for data/MC comparisons of same diagnostic variables

• Example: event visible energy data/MC distributions (28% X^2 probability)

• Step 3: disclose X^2 value for E_v data/MC comparison over (475 < E_v < 3000 MeV) oscillation fit range, still retaining blindness to oscillation signal component

- Oscillation best-fit X^2 probability: 99% (X^2 /dof = 0.9/6)
- Proceed to full box opening that same day... EPS HEP 2007 M. Sorel – IFIC (Valencia U. & CSIC)

EPS HEP 2007

Oscillation Search Results

Counting experiment (475-1250 MeV):

- Observe 380 events, predict 358±19±35 events
- 0.55 σ excess over no-oscillations background

No evidence for oscillations

EPS HEP 2007

Oscillation Parameters Exclusion

• No overlap in 90% CL allowed LSND and MiniBooNE regions

 MiniBooNE excludes two neutrino appearance-only oscillations as the explanation of the LSND anomaly at ~98% CL

• Any interpetation of the LSND anomaly that would produce a significant excess for $E_v>475$ MeV at MiniBooNE is also ruled out

M. Sorel – IFIC (Valencia U. & CSIC)

Low-Energy Excess

• Electron candidate events over the full (300 < E_v < 3000 MeV) energy range

- The low-energy data does not match expectations:
- 3.7 σ excess in (300 < E_v < 475 MeV)
- This discrepancy is *not* understood

- Low-energy excess is *not* consistent with two neutrino appearance oscillations
- Fit to the (300 < $\rm E_{y}$ < 3000 MeV) energy range gives a 18% $\rm X^{2}$ probability
- Need to do more analysis and gather more facts before making any conclusions

EPS HEP 2007

What about

independent analysis (BDT)?

EPS HEP 2007

Oscillation Search Results (BDT)

Counting experiment (300-1600 MeV):

- Observe 971 events
- Predict 1070±33±225 events
- -0.38 σ excess over background

No evidence for oscillations

Energy-dependent Oscillation Best-Fit (200-3000 MeV v_{r} -like and v_{r}):

• $\sin^2 2\theta = 1.2 \times 10^{-3}$

•
$$\Delta m^2 = 7.5 \text{ eV}^2/\text{c}^4$$

•
$$\chi^2_{\text{null}}$$
 - χ^2_{best} = 0.71

- Data error bars are statistical
- Predictions error band from diagonal elements of syst.-only covariance matrix

EPS HEP 2007

Oscillation Parameters Exclusion (BDT)

EPS HEP 2007

Conclusions

• The LSND anomaly remains ... an anomaly:

- MiniBooNE finds excellent agreement between data and the no-oscillation prediction in the oscillation analysis region
- MiniBooNE excludes at ~98% confidence level the interpretation of the LSND anomaly put forward by the LSND collaboration to interpret its own result:

two neutrino, muon-to-electron neutrino appearance-only oscillations

• MiniBooNE finds a discrepancy at energies below oscillation analysis range:

currently not understood and under investigation

 More sensitive/generic analyses of electron candidate events being developed, results from antineutrino data sample will follow after that EPS HEP 2007 M. Sorel – IFIC (Valencia U. & CSIC)

The LSND Experiment

The neutrino detector:

For $\overline{v}_{e} p \rightarrow e^{+} n$ interactions, detects:

• Scintillation light from *n* capture

• Cherenkov/scintillation light from e^+

- The neutrino source:
- $\overline{\nu}_{\mu}$ from: $\pi^+ \rightarrow \mu^+ \nu_{\mu}, \ \mu^+ \rightarrow e^+ \nu_e \overline{\nu}_{\mu}$
- $E_v = 20 53$ MeV, $L_v = 25 35$ m
- Almost no \overline{v}_e at source
- 10¹²v/cm²/MeV $v_{\rm u}(\div 20)$ 6 800 MeV proton beam from 5 ANSCE accelerator Water target З Copper beamstop 2 1 LSND Detector 0 20 30 40 50 0 10 60 MeV 5 10¹²v/cm²/MeV 4.5 4 3.5 3 2,5 $\bar{v}_{e}(\times 500)$ 2 1.5 1 0.5 Time $\bar{\nu}_e \ p \to e^+ \ n \quad n \ p \to d \ \gamma$ 0 20 50 10 30 40 60 MeV 24 M. Sorel – IFIC (Valencia U. & CSIC) **EPS HEP 2007**

The LSND Oscillation Result

EPS HEP 2007

Modeling Neutrino Fluxes

GEANT4 beamline description, simulating:

- Primary protons, geometry, materials and horn field
- Interactions, focusing, meson and muon decays

 Pion/kaon production data on beryllium is the most important external physics input to the simulation
 -> parametrized according to relevant hadron production data sets

 $d^2 \sigma^{\pi} / (dp d\Omega) (mb / (GeV/c sr))$

200

100

200

100

30-60 mrad

90-120 mrad

200

60-90 mrad

120-150 mrad

Modeling Neutrino Interactions

• NUANCEv3 cross-section generator

simulating all relevant neutrino processes, including detailed treatment of Carbon nuclear effects (D. Casper, hep-ph/0208030)

• NUANCE inputs:

- Free nucleon cross-sections from neutrino data
- Nuclear model from electron data
- Final state interactions from π /p scattering data

MiniBooNE's modifications to NUANCE (based on MB neutrino data):

- Pauli blocking model and nucleon axial form factor for QE scattering
- coherent pion cross-sections ·
- final state interactions
- angular correlations in resonance decay
- nuclear de-excitation photon emission

EPS HEP 2007

EPS HEP 2007

M. Sorel – IFIC (Valencia U. & CSIC)

28

Signal Energy Region in Appearance Search

 Energy range for expected signal events is approximately:

 $300 < E_{v} < 1500 \text{ MeV}$

MiniBooNE signal examples:

 $\Delta m^2 = 0.4 \text{ eV}^2$ $\Delta m^2 = 0.7 \text{ eV}^2$ $\Delta m^2 = 1.0 \text{ eV}^2$

Reconstructed Neutrino Energy (GeV)

- In this energy range, one can then either:
 - look for a total electron candidate excess ("counting experiment")
 - look for energy-dependence of excess ("energy fit")

EPS HEP 2007

Neutrino Energy Reconstruction

 Reconstruct neutrino energy in CCQE interactions (assuming target at rest) from:

- known neutrino direction
- measured charged lepton energy and direction wrt neutrino beam

$$E_{v}^{\text{QE}} = \frac{E_{e}(m_{N} - V) + \frac{1}{2}(m_{N}^{2} - (m_{N} - V)^{2} - m_{e}^{2})}{(m_{N} - V) - E_{e} + p_{e}\cos\theta_{ve}}$$

 $_{\bullet}$ MC study of all fully oscillated $\nu_{_{\mu}}\text{-}\!\!>\!\!\nu_{_{e}}$ events surviving cuts give 20-30% RMS resolution

Reconstruction and Particle Identification (BDT)

Reconstruction:

- Slightly less detailed (and performing):
- \bullet 24 cm resolution for $v_{\rm e}$ event vertex
- 3.4 deg for electron track direction
- 14% for electron track energy

Particle Identification:

 Use sophisticated machine learning technique (*Boosted Decision Tree*) with 172 PID input variables (see B. Roe's talk)

• "Sideband" region in Boosting PID score nearest to oscillation signal, containing mostly v_NC π^0 and v_CCQE events:

Signal Efficiency and Background Composition (BDT)

Signal and background efficiency:
 Single subevent, hit-level, fiducial volume cuts
 + E-dependent Boosting PID score cut

• Expected background composition in signal region (300-1600 MeV)

- Background events constrained by:
 - ν_{μ} events
 - $\nu_{\rm e}$ -like events in low (200-300 MeV) and high (1600-3000 MeV) energy regions, containing negligible oscillation events

Electron Candidate Events in Two Analyses

• Simple and effective way of understanding independence of two analyses is to quantify how independent their v_{a} -like data samples are

 Out of all events selected by either one (or both) analyses in respective signal regions, only 19% in common

