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Abstract

We study the evolution of the coupled scalar and fermion fields within the classical field theory. We examine the caN

coupled fields in(1 + 3)-dimensional space. The general expressions for the fields distributions are obtained. The p
case of two fields in(1+ 1)-dimensional space is carefully studied. We obtain the expressions for the averaged fields int
and show that in the relativistic limit they are similar to the usual transition probabilities formulae of neutrino oscillation
 2005 Elsevier B.V. All rights reserved.
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The particle mixing plays an important role in el
mentary particle physics. According to the experim
tal data the particle mixing exists in both quark a
lepton sectors of the standard model. The idea of m
ing among the two quark flavors was put forward
Ref. [1] to explain the baryons decays. The mixing
the leptonic sector of the standard model was propo
in Ref. [2]. In that parer the neutrino mixing and o
cillations were studied on the analogy of the kno
at that timeK0 ↔ K̄0 oscillations. Then in Ref.[3]
this approach was generalized on the mixing betw
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three neutrino flavors. Recently we obtained the str
evidence in favor of neutrino oscillations and, the
fore, mixing (see, for instance, Ref.[4]). For example,
neutrino oscillations are likely to be the most plau
ble explanation of the solar and atmospheric neut
problems.

In Ref. [2] the neutrino oscillations were examin
within the quantum mechanical approach. Schrödin
like differential equation for the description of th
two-level neutrino system was proposed. On the b
of this equation one can derive the famous transi
probability formula,

(1)P(t) = sin2(2θvac)sin

(
�m2

4E
t

)
,

.

http://www.elsevier.com/locate/physletb
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whereθvac is the vacuum mixing angle,�m2 is the
mass squared difference andE is the energy of the
system. Up to now Eq.(1) is of use in numerous phe
nomenological studies of neutrino oscillations. Ho
ever more profound analysis of particle mixing a
oscillations is necessary. The approach to the osc
tions phenomenon based on the field theory meth
should be elaborated.

In the last decade a great deal of studies on the
theoretical substantiation of Eq.(1) were carried out
First of all it is necessary to mention works by M. Bl
sone and G. Vitiello and their collaborators (see R
[5–8]). In these papers the authors made the c
prehensive analysis of the fermion and boson mix
transformations using the methods of quantum fi
theory. It was demonstrated that the vacuum struc
of mass eigenstates is not equivalent to one of
vor eigenstates. The quantum mechanical formula
the transition probability was also reproduced. Mo
over some corrections, which result from more ca
ful quantum field theory analysis, were obtained.
Ref. [9] the group theoretical aspects of neutrino
cillations were discussed. Analogous approach to
scription of the neutrino oscillations was developed
Refs.[10,11].

Rather appreciable contributions to the investi
tion of the flavor neutrino oscillations were made
Refs.[12,13]. In those papers the wave packages tre
ment of neutrino oscillations was developed as w
as the discussion of the neutrino oscillations phas
presented. The neutrino oscillations phase was
studied in Ref.[14]. A very interesting approach t
the description of the neutrino flavor oscillations w
proposed in Ref.[15]. In that paper the covariant pa
amplitudes method was applied for the analysis of
neutrino oscillations phase.

Recently we elaborated the quasi-classical
proach for the description of spin (see Refs.[16–18])
and flavor neutrino oscillations (see Ref.[19]). It was
shown that neutrino oscillations in moving and p
larized matter under the influence of arbitrary el
tromagnetic fields were described by the generali
Lorentz invariant quasi-classical Bargmann–Mich
Telegdi equation. It is interesting to note that the eq
tion describing the precession of the neutrino thr
dimensional spin vector (neutrino spin in particle’s r
frame) is the usual Bloch equation. We demonstra
that neutrino spin rotates around a certain direc
determined by the velocities and polarizations of ba
ground fermions as well as the electromagnetic fi
strength.

The method involving the Bloch equation for th
treatment of neutrino flavor oscillations was propos
in Ref.[20]. If one considers the evolution of two ne
trinos system (e.g.,νe andνµ), it is possible to intro-
duce the “polarization” vectorP = Tr(σρ), whereσ

are the Pauli matrices andρ is the 2×2 density matrix.
If neutrinos propagate in vacuum, the vectorP was
shown to precess without loss of length according
the Bloch equation. The appearance of classical eff
in various quantum systems (including the analysis
a two-level system with help of the Bloch equatio
was discussed in Ref.[21]. Thus basing on the sim
ilarity in the description of neutrino spin and flav
oscillations we suppose that classical theory meth
could have been applied for the treatment of the
vor oscillations. However this supposition should
substantiated by the direct calculations that show
classical theory yields at least the same results as
quantum one.

In this Letter we study the evolution of the co
pled scalar as well as fermion fields within the cont
of classical field theory. The main goal of our ar
cle is to demonstrate that neutrino oscillations can
described within the classical approach. The cla
cal approach was also adopted since we should
be puzzled by a problem: must we rely on flavor
mass eigenstates in our treatment of neutrino osc
tions? The intensive discussion about this topic ta
place in Refs.[13,22]. The case ofN coupled fields
in (1 + 3)-dimensional space is examined. We so
the Cauchy problem for this system, i.e., for the giv
initial conditions we find the fields distributions fo
any time point. In order to analyze the obtained
pressions we study the particular case of two field
(1+1)-dimensional space. For the specific initial co
ditions the expressions for the averaged fields inte
ties are obtained. We also show that in the relativi
limit they are similar to the usual transition probab
ities formulae of neutrino oscillations in vacuum. It
interesting to mention that the expressions for the
eraged fields intensities are identical for both bos
and fermions.

First let us discuss the case ofN arbitrary cou-
pled scalar fields. For simplicity we suppose that th
fields are the real ones. The Lagrangian for this sys
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is expressed in the following form

(2)L(ϕ) =
N∑

k=1

L0(ϕk) +
N∑

i,j=1
i �=k

gikϕiϕk,

wheregik are the coupling constants,ϕ = (ϕ1, . . . ,

ϕN), and

(3)L0(ϕk) = 1

2
∂µϕk∂

µϕk − m2
k

2
ϕ2

k ,

is the Lagrangian for the fieldϕk(r, t) at the absenc
of the additional coupling,mk is the mass correspond
ing to this field. It is necessary to note that the sec
term in Eq.(2) is assumed to be an interaction betwe
fieldsϕk .

In order to describe the evolution of the system(2),
(3) we should set the Cauchy problem for this syste
For the initial conditions,

(4)ϕi(r,0) = fi(r), ϕ̇i(r,0) = gi(r),

where fi(r) and gi(r) are the given functions, on
should find the fields distributionsϕk(r, t) for any time
point.

It is always possible to diagonalize the Lagrang
(2) with help of the transformation,

ϕi(r, t) =
N∑

k=1

Mikuk(r, t).

Thus the Lagrangian expressed in terms of the fie
uk(r, t) takes the form

L(u) =
N∑

k=1

L0(uk),

whereL0(uk) is the Lagrangian for the fielduk(r, t),

L0(uk) = 1

2
∂µuk∂

µuk − m2
k

2
u2

k,

and mk are the corresponding masses. It should
noted that these masses differ from the masses o
fields ϕk . The fieldsuk(r, t) are usually called mas
eigenstates in contrast toϕk(r, t).

One can write the differential equations for t
fields uk(r, t). It is the system of the usual homog
neous Klein–Gordon equations. Their solutions h
the form

(5)

uk(r, t) =
∫

d3p
(2π)3

[
a+
k (p)e−iEk t

+ a−
k (p)eiEk t

]
eipr,

whereEk =
√

p2 + m2
k , anda±

k (p) are the Fourier co

efficients. Note thata±
k (p) are thec-numbers.

To solve the Cauchy problem we introduce t
functions

Fk(r) =
N∑

i=1

(
M−1)

ki
fi(r),

Gk(r) =
N∑

i=1

(
M−1)

ki
gi(r).

These functions are the initial conditions for the fie
uk . Then one should pick out the coefficientsa±

k (p) so
that to satisfy the initial conditions(4). From Eqs.(4)
and (5)we obtain

a±
k (p) = 1

2

(
Fk(p) ± i

Gk(p)

Ek

)
,

whereFk(p) andGk(p) are the Fourier transforms o
the functionsFk(r) and Gk(r), respectively. Finally
we receive the fields distributionsϕj (r, t) in the ex-
plicit form

ϕj (r, t) =
N∑

ik=1

Mjk

(
M−1)

ki

×
∫

d3r′ [Ḋk(r − r′, t)fi(r′)

(6)+ Dk(r − r′, t)gi(r′)
]
,

where

(7)Dk(r, t) =
∫

d3p
(2π)3

eipr sinEkt

Ek

,

is the Pauli–Jordan function. It is interesting to l
some of the properties of the Pauli–Jordan function

Dk(r,0) = 0, Ḋk(r,0) = δ3(r),

D̈k(r,0) = 0.

It is worth noticing that the initial conditions i
Eq. (4) are consistent with these properties of
Pauli–Jordan function. We also mention that the Pa
Jordan function can be expressed in the explicit fo
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(see, e.g., Ref.[23]),

(8)

Dk(r, t) = 1

2π
ε(t)δ

(
s2) − mk

4πs
ε(t)θ

(
s2)J1(mks),

wheres2 = t2 − r2 and

ε(t) =
{

1, t > 0,

−1, t < 0,
θ(s) =

{
1, s > 0,

0, s < 0

are the step functions. Thus Eqs.(6) and (7)represent
the exact solution of the Cauchy problem for arbitra
functionsfi(r) andgi(r).

The integrals calculation in Eq.(6), however, are
rather awkward in general(1+ 3)-dimensional space
Thus let us, for simplicity, consider the space with 1+
1 dimensions. Instead of Eq.(7) we have

Dk(x, t) =
+∞∫

−∞

dp

2π
eipx sinEkt

Ek

.

Now Ek =
√

p2 + m2
k . One can also obtain the Paul

Jordan function in the explicit form (see Eq.(8)) in
(1+ 1)-dimensional space,

(9)Dk(x, t) = 1

2
θ
(
s2)J0(mks),

(10)Ḋk(x, t) = tδ
(
s2) − mkt

2s
θ
(
s2)J1(mks).

Heres2 = t2 − x2.
We suppose thatgk(x) = 0 andfk(x) �= 0. Then we

receive (see also Ref.[24])

ϕj (x, t) =
N∑

ik=1

Mjk

(
M−1)

ki

×
{

1

2

[
fi(x − t) + fi(x + t)

]

(11)− mkt

2

x+t∫
x−t

dy fi(y)
J1(mks)

s

}
.

It should be noted that if functionsfi(x) �= 0 in a
bounded region andfi(x) → 0, whenx → ±∞ then
the second term in Eq.(11) is the vanishing one and

ϕj (x, t) → 1

2

[
fj (x − t) + fj (x + t)

]
.

This property of the Klein–Gordon equation was a
mentioned in Ref.[24]. The described feature has o
interesting physical implication. If a single particle a
pears far from a detector, then its field distribution
localized in space. When a particle begins propaga
towards a detector its field distribution approaches
the initial conditions. Thus the effect of various no
trivial phenomena (like conversion, or oscillation
from one field type to another) will be vanishing.

Now let us choose the initial conditions. We su
posef1(x) = 0 and

f2(x) = Asin

(
ω

2
x

)
, A = 4√

ωL
,

whereL is the “volume” of the space. Note thatA is
just the normalization factor. In this case we can c
culate the integral in Eq.(11)explicitly

x+t∫
x−t

dy sin

(
ω

2
y

)
J1(ms)

s

(12)= π sin

(
ω

2
x

)
J1/2

(
t

2
β1

)
J1/2

(
t

2
β2

)
,

where

β1,2 =
√

ω2

4
+ m2 ∓ ω

2
.

In computation of the integral in Eq.(12) we used the
expression

a∫
0

dx
cos(b

√
a2 − x2)√

a2 − x2
Jν(cx)

= π

2
Jν/2

[
a

2

(√
b2 + c2 − b

)]

× Jν/2

[
a

2

(√
b2 + c2 + b

)]
.

One half-order Bessel function can be expresse
terms of the elementary function. Namely,

(13)J1/2(z) =
√

2

πz
sinz.

Let us consider the case whenω has great value
compared to the massesm1,2: ω � m1,2. This situa-
tion corresponds to the high energy approximation
relativistic “particles”. Then, the parametersβ take
1,2
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(14)β1 = m2

ω
, β2 = ω.

The field distributionϕ1(x,0) is equal to zero. Thu
we can describe the dynamics of this field for the s
sequent points of time. If one studies the evolut
of two fields,ϕ1,2(x, t), it is possible to parameteriz
the matrixMjk with help of one angle

(15)Mjk =
(

cosθ sinθ

−sinθ cosθ

)
.

Using Eqs.(12)–(15)we can rewrite Eq.(11) in the
following way

ϕ1(x, t) = 2Asin 2θ sin

(
ω

2
x

)
sin

(
ω

2
t

)

× sin

[
t

4ω

(
m2

1 − m2
2

)]

(16)× cos

[
t

4ω

(
m2

1 + m2
2

)]
.

Now let us discuss the field measurement proc
In case of rapidly varying fields (ω � m1,2), a de-
tector registers not the field strength, but the inten
of the field which is proportional to the field streng
squared,I ∼ ϕ2(x, t). Moreover a detector has limite
sensitivity, i.e., it cannot register arbitrary field var
tion in time and in space. Thus we should average
intensity over the characteristic time and space sca
These scales should be greater than typical time
space scales of the field in question, i.e., 1/ω.

To calculate the mean value of the intensity o
should take into account the expressions〈
sin2

(
ω

2
x

)〉
=

〈
sin2

(
ω

2
t

)〉
= 1

2
,

and〈
sin2

[
t

4ω

(
m2

1 − m2
2

)]〉
= sin2

[
t

4ω

(
m2

1 − m2
2

)]
,〈

cos2
[

t

4ω

(
m2

1 + m2
2

)]〉
= cos2

[
t

4ω

(
m2

1 + m2
2

)]
,

since(m2
1 ± m2

2)/ω 
 ω. Then we should introduc
the normalized intensity of the fieldϕ1(x, t) according
to the formula

P(t) = 〈I 〉(t)
A2

.

Finally we obtain the expression forP(t) in the fol-
lowing form,

P(t) = sin2 2θ sin2
(

�m2

4ω
t

)

(17)×
{

1− sin2
(

m2
1 + m2

2

4ω
t

)}
,

where we introduced the common notation�m2 =
m2

1 − m2
2.

It is necessary to identify theω parameter. We can
not directly equate it to the particle energy,E = h̄ω,
since we are using the classical approach here. M
over, the chosen “wave function”,f2(x) ∼ sin(ωx/2),
does not correspond to a definite momentum and
to a definite energy. However we can calculate the
eraged energy density of the system,

(18)〈ρE〉 =
〈
1

2

{(
df2

dx

)2

+ m2
2f

2
2 (x)

}〉
.

Here we suppose thatf1(x) = 0. Using Eq.(18) in
relativistic limit (ω � m1,2) we obtain that

〈ρE〉 = ω

L
,

and we can identifyω with the energy of the system
Thus the first term in Eq.(17) is similar to the well-
known formula for the transition probability in the tw
neutrino system. It is interesting to mention that
second term in Eq.(17) contains the harmonic osci
lations with the frequency(m2

1 + m2
2)/4ω. Analogous

additional term was obtained in Refs.[5–8] and was
treated as the quantum field theory correction to
Eq. (1). However our approach demonstrates that
term appears when one uses classical field theor
results from the accurate account of the Lorentz
variance.

Now let us discuss the case of the coupled ferm
fields. The Lagrangian for this system is expresse
the following way

L(ν) =
N∑

k=1

L0(νk) +
(

N∑
i,j=1
i>k

gikν̄iνk + h.c.

)
,

whereν = (ν1, . . . , νN), and

L0(νk) = ν̄k

(
iγ µ∂µ − mk

)
νk.
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We again should set the Cauchy problem for the s
tem of differential equations in question. Howev
here one has to impose only one initial condition sin
Dirac equation is the first-order differential equatio

(19)νk(r,0) = ξk(r).

Analogously to the case of the scalar fields we can
troduce the mass eigenstates,

νi(r, t) =
N∑

k=1

Mikψk(r, t).

The Lagrangian expressed in terms of the mass ei
states has the form,

L(ψ) =
N∑

k=1

L0(ψk),

where

L0(ψk) = ψ̄k

(
iγ µ∂µ − mk

)
ψk,

is the Lagrangian for the fieldψk(r, t). Note that
massesmk differ from the masses of the fieldsνk .

The solution of the Dirac equations for the ma
eigenstates fields can be expressed in the follow
way,

ψk(r, t) =
∫

d3p
(2π)3/2

[
as(p)us(p)e−iEk t

(20)+ bs(−p)vs(−p)eiEk t
]
eipr.

Hereus(p) andvs(p) are the basis spinors,as(p) and
bs(p) are the indeterminate functions.

Now we should find the values of theas(p) and
bs(p) c-number functions to satisfy the initial cond
tion given in Eq.(19). The calculations are analogo
to the previously discussed case of the coupled sc
fields. Thus we arrive to the solution of the Dirac equ
tions which are valid for arbitrary functionsξi(r),

νj (r, t) =
N∑

ik=1

Mjk

(
M−1)

ki

(21)×
∫

d3r′ Sk(r′ − r, t)
(−iγ 0)ξi(r′),

where

Sk(r, t) = (
iγ µ∂µ + mk

)
Dk(r, t),

xµ = (t, r),
is the Pauli–Jordan function for a fermion field (se
e.g., Ref.[25]). In deriving of Eq.(21) we used the
orthonormality conditions

u†
s (p)ur(p) = v†

s (p)vr (p) = δsr ,

u†
s (p)vr (−p) = v†

s (p)ur(−p) = 0,

and the formulae for the summation over the spin
dexes∑

s

us(k)u†
s (k) = /p + m

2p0
γ 0,

∑
s

vs(k)v†
s (k) = /p − m

2p0
γ 0.

It is interesting to mention that the functionSk(r, t)
has the following property,

Sk(r,0) = iγ 0δ3(r).

Thus the solution given in Eq.(21) is consistent with
the initial condition(19). Eq. (21) can be rewritten in
the non-covariant form which is, however, more co
venient for the further analysis,

νj (r, t) =
N∑

ik=1

Mjk

(
M−1)

ki

×
{
−

∫
d3r′ (α∇r)Dk(r − r′, t)ξi(r′)

+
∫

d3r′ Ḋk(r − r′, t)ξi(r′)

(22)− imkβ

∫
d3r′ Dk(r − r′, t)ξi(r′)

}
,

where we use common notations for the gamma
trixes,α = γ 0γ andβ = γ 0.

Just for simplicity we again discuss the case of t
coupled Dirac fields in the space with 1+ 1 dimen-
sions. Dirac equation in(1+1)-dimensional space wa
carefully studied in Refs.[26–28]. The gamma ma
trixes have the form,

(23)γ 0 =
(

1 0
0 −1

)
, γ 1 =

(
0 1

−1 0

)
.

Now one should set the initial conditions. Let
assume thatξ1(x) = 0 andξ2(x) is expressed in th
following way,

(24)ξ2(x) = 1
(

cos(ωx/2)
)

.

2 sin(ωx/2)



268 M. Dvornikov / Physics Letters B 610 (2005) 262–269

the
on
the
ird

gral

in

e
a-
an

eld

ver

ed

cy

n-
-
ory.
the
l-

is
tum
nal
ity.
u-
sed

ial

ne
this
on
ns
is-

o-
field
ed

ea-

en-

he
he
ter.
We obtained the expression for the evolution of
ν1(x, t) which accounts for the exact dependencies
the particles masses. However it appeared to be ra
awkward. Nevertheless it can be shown that the th
term in Eq.(22) is negligible in(1 + 1)-dimensional
space. Indeed, let us consider, for instance, the inte

(25)I (x, t) =
+∞∫

−∞
dy Dk(x − y, t)sin

(
ω

2
y

)
.

We remind that the Pauli–Jordan function in(1 + 1)-
dimensional space is given in Eq.(9). The integral in
Eq. (25) can be calculated explicitly and expressed
the form

(26)I (x, t) = sin

(
ω

2
x

)sin(t
√

m2
k + (ω/2)2 )√

m2
k + (ω/2)2

.

Here we used the known value of the integral

a∫
0

dx J0
(
b
√

a2 − x2
)
cos(cx) = sin(a

√
b2 + c2 )√

b2 + c2
.

Thus in the high energy approximation (ω � mk) we
obtain thatI (x, t) → 0. It is also interesting to not
that one should carefully follow the order of integr
tion and differentiation while using the Pauli–Jord
function. Indeed using, for example, Eqs.(10)–(12)
and (26)we can see that

d

dt

+∞∫
−∞

dx Dk(x, t)f (x) �=
+∞∫

−∞
dx

∂

∂t
Dk(x, t)f (x),

because Pauli–Jordan function is the singular one.
Finally we get the expression for theν1(x, t),

ν1(x, t) = sin 2θ

[
sin

(
ω

2
t

)
+ cos

(
ω

2
t

)]

× sin

[
t

4ω

(
m2

1 − m2
2

)]
cos

[
t

4ω

(
m2

1 + m2
2

)]

(27)×
(

cos(ωx/2)

sin(ωx/2)

)
.

In deriving of Eq.(27)we used the fact that

(28)
∂

∂x
Dk(x, t) = −x

t

∂

∂t
Dk(x, t).
r

The measurable quantity of the classical Dirac fi
is the intensity. It is proportional to the|ν1(x, t)|2.
However we again should average the intensity o
space and time. Thus, using Eq.(27) we obtain for
〈I 〉(t) the following expression

〈I 〉(t) = sin2 2θ sin2
(

�m2

4ω
t

)

(29)×
{

1− sin2
(

m2
1 + m2

2

4ω
t

)}
,

which coincides with the similar expression deriv
for the scalar field. Note that Eq.(29) again con-
tains the additional term oscillating with the frequen
(m2

1 + m2
2)/4ω.

The calculations performed in this Letter demo
strate (especially Eq.(29)) that neutrino flavor oscilla
tions can be treated in frames of the classical the
According to the classical field theory approach
evolution of flavor neutrinos is described in the fo
lowing way.

(1) Flavor neutrino emission in a reaction. Th
process can be described by means of the quan
approach. However here we should obtain the fi
field distribution rather than the emission probabil
It is also possible to admit that the mixture of the ne
trino flavors appears in a process, as it was propo
in Ref. [22]. In this case one should set other init
conditions in Eqs.(4) and (19);

(2) Neutrino propagation towards a detector. O
can successfully use the methods elaborated in
Letter for the description of the neutrino conversi
or oscillations. Basing on the initial fields distributio
obtained in the item (1) we derive the final fields d
tributions that take into particles mixing;

(3) Neutrino interaction with a detector. This pr
cess again can be described by means of quantum
theory. On the basis of the fields distributions obtain
in the item (2) one can calculate the neutrino flux m
sured with a detector.

Thus we should not directly involve the mass eig
states if we are using classical approach.

In conclusion we mention that the evolution of t
coupled scalar as well as fermion fields within t
classical field theory has been studied in this Let
We have examined the case ofN coupled fields in
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of
(1 + 3)-dimensional space. The Cauchy problem
been formulated for these systems. We have solve
for arbitrary initial conditions. The particular case
two coupled fields in(1 + 1)-dimensional space ha
been studied. Finally we have obtained the express
for the averaged fields intensities. It has been sh
that in the relativistic limit these expressions were s
ilar to the usual transition probabilities formulae
neutrino oscillations in vacuum. The discussion of
additional terms in transition probabilities formul
has been presented. It has been demonstrated th
expressions for the averaged fields intensities for b
bosons and fermions turned out to be identical.
have shown by means of the direct calculations
the flavor oscillations phenomenon could be descri
within the classical approach. Thus one can concl
that the usage of the quantum mechanics is inexp
ent because classical field theory yields more eleg
description of the problem in question.
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