Detection of Head-Tail of Nuclear Recoils

Denis Dujmic, MIT for BU-MIT-Brandeis Collaboration

> EPS, Manchester Thursday, July 19, 2007

BU-MIT-Brandeis Collaboration

- <u>Boston U.</u> S. Ahlen M. Lewandowska A. Roccaro H. Tomita
- <u>Brandeis U.</u> H. Wellensten N. Skvorodnev
- *) undergraduate student 1) Also Harvard U.

- <u>MIT</u>
- B. Cornell* 1)
- D. Dujmic
- W. Fedus*
- P. Fisher
- A. Kaboth
- G. Kohse
- R. Lanza
- J. Monroe
- A. Piso*
- T. Sahin*
- G. Sciolla
- R. Yamamoto
- H. Yegoryan*

Current Limits

For $\sigma \sim 10^{-46}$ cm² zerobackground analysis hard (e.g. due to coherent scattering from solar neutrinos [Monroe,Fisher, arXiv:0706.3019])

Directional measurements (head/tail) may be the only way to unambiguously detect dark matter using correlation with astrophysics phenomena

Dark Matter Direction

Background - not pointing to Cygnus Signal - pointing to Cygnus

Cygnus

Earth

No known experimental technique can reconstruct direction of WIMPs!

Detection Principle

Elastic recoil on gas nucleus Recoiling track (~mm) ionizes gas:

Charge multiplication and scintillation:

Predicted dE/dx of recoiling fluorine nucleus*

Asymmetry in scintillation profile along wire**:

*stopping power and straggling from SRIM

**Recoil from 200GeV WIMP; Diffusion effects not included

July 19, 2007

Direction of fluorine recoil determined from scintillation profile

Image of Alpha Tracks

5.5MeV alpha tracks parallel with anode wires:

Scintillation Profile of α Track

Data + fit dE/dx from SRIM

Assume dE/dx ~ scintillation

Diffusion Along Wire

Four alpha sources at different heights in drift region (Δz) Critical parameter: range for nuclear recoils ~ mm

Diffusion Along Wire

Profile along wire

Signal width for different sources $(\Delta z \text{ positions})$

$$\sigma[\mu m] = 324 \oplus 36\sqrt{\Delta z}$$

340 μ m for Δz =1cm 670 μ m for Δz =25cm

Recoils in Neutron Beam

Neutrons vs. WIMPs

Neutron elastic scattering mimics dark matter recoils

Cross Sections

Predicted neutron scattering cross sections (ENDF-B/VII.0)

ENDF-Relational v-1.0

Cross Section (barns)

Event Images

Wires at 0 deg:

Wires at 180 deg:

Energy vs. Range

Correlation between energy (ADC counts) and range (CCD pixels):

Energy vs. Range

Comparison with MC ($\pm 1\sigma$ spread is indicated):

July 19, 2007

Measure of Head-Tail Effect

Skewness of light asymmetry along segment:

$$\gamma(x)=rac{\mu_3}{\mu_2^{3/2}}=rac{\langle (x-\langle x
angle)^3
angle}{\langle (x-\langle x
angle)^2
angle^{3/2}}$$

(dimensionless!)

19

Head-tail of track direction:

Skewness MC

 $\pm 1\sigma$ spread in data (points), MC (dashed, shaded)

Control Sample: n ⊥ Wires

n

Null test with neutrons @ 90deg to wires Same # of recoils to left, right

Control Sample: $\alpha \perp$ wires

0.5

0

-0.5

For the *first time*, we demonstrated technique to measure head-tail of nuclear recoils:

- observed asymmetry in direction of recoils
- and correlation between energy and range,
- both consistent with MC expectation;
- Sanity checks ok.

Critical parameters for dark matter search:

length of recoil along wire: 5x longer scintillation profile than in neutron scattering (for same energy) *photon yield*: detector performance with higher gain under study

A Year from Now

	Current	2008
Pressure (Torr)	200	100
Wire diameter (µm)	100	30
Viewfield area (cmxcm)	1×1	100×100
Drift length (cm)	2.6	25

Longer track Better gain Bigger sensitive region

Set limit on cross section with few months of data

Backup

Energy Calibration

1) Use light emitted from alpha tracks, dE/dx from SRIM

Energy Calibration

Dark Matter Direction

July 19, 2007