FCNCs and CP Violation in the Minimal 331 Model

Felix Schwab, IFAE, Universitat Autònoma de Barcelona EPS Conference 2007, July 19th - 25th, Manchester

Christoph Promberger, Sebastian Schatt, Felix Schwab

hep-ph/0702169

FCNCs and CP Violation in the Minimal 331 Model - p.1/9

331 Models I: Why bother?

331 models have several nice features:

- Connection between anomaly cancellation and number of families: For anomalies to be canceled, the number of families has to be a multiple of 3. Using asymptotic freedom, only the possibility of 3 generations remains.
- Flavor physics is interesting because EWP test are only affected at loop level, while FCNCs arise at tree level.
- In flavor physics, we are dealing with an effective Z' model (sort of) ⇒ What can we learn more generally?
- Mixing parameters are most stringent constraints \Rightarrow New measurement of ΔM_s suggests a complete analysis.

331 Models II: Basic Features

We now discuss only the *minimal* 331 model (Frampton; Pisano, Pleitez, 1992, further developed since then)

- Based on a gauge group $SU(3)_C \times SU(3)_L \times U(1) \Rightarrow$ Broken down to $U(1)_{SM}$ in two steps, uses 3 Higgs doublets.
- Important ingredient: Third generation is treated as $\overline{3}$; Leads to FCNCs at tree level.
- Particle content: Fermion doublets are extended to triplets. Third member is a heavy quark/charged conjugate lepton.
- Gauge Bosons: In addition to the SM, there is a neutral Z' and charged V^{\pm} and $Y^{\pm\pm}$. Masses of order of 331 breaking scale
- The model develops a Landau Pole when $\sin^2 \theta_W = 0.25$. \Rightarrow Upper bound on M'_Z of several TeV.

FCNCs in 331 models

Look at gauge fermion vertices: Charged gauge bosons always couple to heavy quark \Rightarrow Not observable at tree level for low energy processes

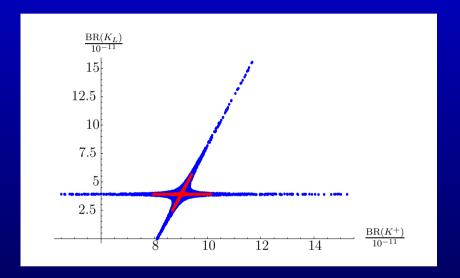
Z' quark vertices can be flavor changing due to different treatment of third generation.

$$\mathcal{L}_{FCNC} = \frac{gc_W}{\sqrt{3}\sqrt{1-4s_W^2}} [\overline{d}\gamma_\mu\gamma_L \tilde{V}_L^{\dagger} \begin{pmatrix} 0 & & \\ & 0 & \\ & & 1 \end{pmatrix} \tilde{V}_L d] Z'^{\mu} .$$

 \tilde{V} is mixing matrix in down quark sector. Introduces 6 new parameters, which can be further reduced to 4: 2 angles and 2 phases.

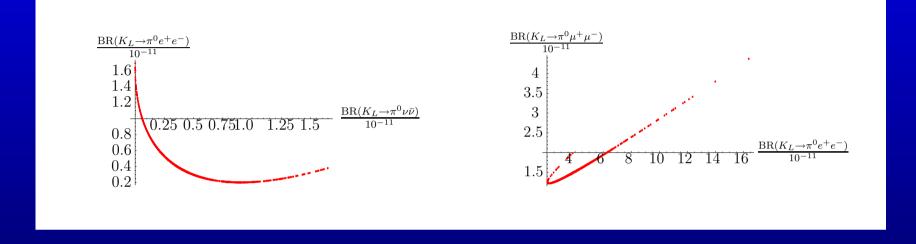
Feature of the model: Z' lepton coupling are suppressed, so we expect only moderate modifications. \Rightarrow Look for correlations.

B and K mixing in the 331 model

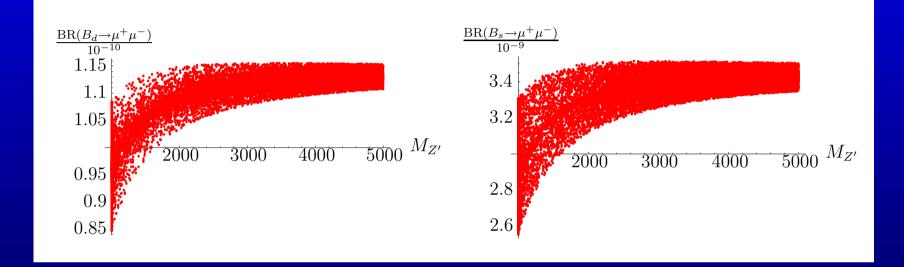

Relevant observables: ε_K , ΔM_K , $\Delta M_{d/s}$, $\sin 2\beta_{d/s}$. We neglect ε'/ε because of large SM uncertainties.

$$H_{\Delta S=2}^{eff} = \frac{G_F}{\sqrt{2}} \frac{1}{3} \frac{c_W^4}{1 - 4s_W^2} \left(\frac{M_Z}{M_{Z'}}\right)^2 (\tilde{V}_{31}\tilde{V}_{32}^*)^2 (\bar{s}d)_{V-A} (\bar{s}d)_{V-A},$$

- In K sector, ε_K constrains imaginary part, ΔM_K constrains real part.
- In *B* sector angles constrain component orthogonal to SM, mass differences roughly constrain absolute values.
- Note: β_s is still essentially unconstrained, and can therefore be arbitrarily large.


Rare decays

We study implications for the following decays: $K^+ \to \pi^+ \nu \bar{\nu}$, $K_L \to \pi^0 \nu \bar{\nu}$, $B_{d/s} \to \mu^+ \mu^-$, $K_L \to \pi^0 l^+ l^-$.


- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and $K_L \rightarrow \pi^0 \nu \bar{\nu}$ show very distinctive pattern. \Rightarrow Significant enhancements possible
- measurement of both decays uniquely fixes phase and absolute value of new contribution.

Numeric II: Correlation between K decays

- Contours in the observable plane allow rather unambiguous tests of the model as with any model.
- In particular $K_L \rightarrow \pi^0 e^+ e^-$ is interestingly sensitive due to separate vector and axial vector contributions.

Numeric III: B decays

Large effects in $B \rightarrow \mu^+ \mu^-$ are excluded - in particular a large enhancement.

Probably similar in $B \rightarrow X_s l^+ l^-$, so existing measurement should be no problem.

Conclusions and Outlook

- Flavor Physics is very well suited to place constraints on 331 models.
- In the *K* system, CP violation is stronger constrained than CP conserving contributions.
- Still sizeable effects in $K \to \pi \nu \bar{\nu}$. Characteristic feature in observable plane.
- Effects in $B_{d/s} \rightarrow \mu^+ \mu^-$ rather small. Preliminary result on $B \rightarrow X_s \gamma$: Effects seem very small.
- Most interesting quantity at the moment is the B_s mixing phase.

A lot of these findings are very general for Z' models!!!