Has a coupling of right-handed quarks to *W* been observed?

Micaela Oertel

LUTH, Meudon

Collaborators: V. Bernard (Strasbourg), E. Passemar (Bern)& J. Stern (Orsay)

V. Bernard, M.O., E. Passemar, J.Stern, Phys. Lett. B 638 (2006) 480 V. Bernard, M.O., E. Passemar, J.Stern, in preparation

Structure of couplings of quarks to W

- Minimal (not quite decoupling) effective theory: first effects beyond the SM are non-standard couplings of fermions to W and Z (Hirn & Stern, '04,'06)
- Effective quark charged current interaction (universal non-standard effects) at NLO ($\epsilon \neq 0$: coupling of right-handed quarks to W)

$$W_{\mu}^{+}\left(\left(1+\delta\right)\,\bar{U}_{L}\,\gamma^{\mu}\,\,V^{L}\,D_{L}\,+\,\epsilon\,\,\bar{U}_{R}\,\gamma^{\mu}\,\,V^{R}\,D_{R}\right)+h.c.$$

- V^L and V^R: two a priori independent unitary mixing matrices
- Effective couplings (V, A):

$$\bar{U}\underbrace{((1+\delta)V^L + \epsilon \ V^R)}_{\mathcal{V}_{eff}} \gamma_\mu D - \bar{U}\underbrace{((1+\delta)V^L - \epsilon \ V^R)}_{\mathcal{A}_{eff}} \gamma_\mu \gamma_5 D$$

 Right-handed charged currents in LR extensions of SM/SUSY, extra dimensions, too

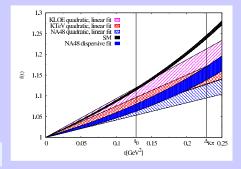
Non-standard parameters in the light quark sector

- Focus on the light-quark sector (u, d, s):
 - RHCs in the (non)-strange sector: $\epsilon_{ns} = \epsilon \operatorname{Re}\left(\frac{V_{ud}^R}{V_{ud}^L}\right)$ $\epsilon_s = \epsilon \operatorname{Re}\left(\frac{V_{us}^R}{V_{us}^L}\right)$
 - Unitarity (suppose V_{ub}^L negligible) $\rightarrow |V_{ud}^L|^2 + |V_{us}^L|^2 = 1$
 - Modification of the left-handed couplings: δ
- ullet $\epsilon_{
 m s}$ can be enhanced by inverted mixing hierarchy in right-handed sector
- Determination of EW couplings → knowledge of QCD parameters!
- Example: extraction of F_{π} from $\pi \to \mu \nu$ is modified if there are RHCs: this process does not probe directly $i\sqrt{2}F_{\pi}q_{\mu}=\langle 0|\bar{u}\gamma_{\mu}\gamma_{5}d|\pi(q)\rangle$ but rather $F_{\pi}\left(1-2\epsilon_{\text{ns}}\right)\equiv\hat{F}_{\pi}$

Testing the SM using the scalar $K\pi$ form factor

- Determining scalar $K\pi$ ff at the Callan-Treiman point ($\equiv C$) in two ways:
 - 1. Measuring scalar $K\pi$ ff (using dispersive representation)
 - 2. CT theorem + measured BRs for $K_{\ell 2}, \ldots$ + EW couplings of quarks
- Measuring scalar $K\pi$ ff at the CT point from $K_{\mu3}$ decay distribution
 - First direct measurement of In C using dispersive representation (NA48, PLB '07)

$$\ln C_{exp} = 0.1438(138)$$


 Assuming SM: In C from measured BRs

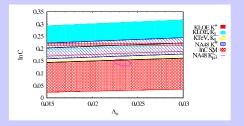
$$\ln C_{\rm SM} = 0.2180(35) + \hat{\Delta}_{\rm CT}$$

 \rightarrow 5 σ discrepancy?

Interpretation? RHCs?

$$2\left(\underline{\epsilon_{\text{S}}}-\underline{\epsilon_{\text{NS}}}\right)+\tilde{\Delta}_{\text{CT}}=-0.074(14)$$

• Experimental situation: slope parameter differs for NA48 ($\lambda_0 = 0.0095(14)$), KTeV ($\lambda_0 = 0.0128(18)$), and KLOE (preliminary $\lambda_0 = 0.0156(26)$)



Other possibilities to measure In C

- Measuring scalar $K\pi$ ff at the CT point from $K_{\ell 3}$ decay rates
 - $\frac{\Gamma(K_{\mu 3})}{\Gamma(K_{e3})} = f(\ln C)$

very sensitive to In C

- Isospin corrections small for the shape of the form factor
 - → compare with data from neutral and charged kaons

- Values available from NA48 (hep-ex/0702015) and KLOE (KAON '07) for charged kaons and KTeV (PRD '04), KLOE (PLB '06) for neutral kaons
- Experimental situation has to be clarified!
- Measuring scalar $K\pi$ ff at the CT point in $\tau \to K\pi\nu$ decays
 - · Largely dominated by vector ff, difficult to access scalar ff
 - New data from Babar and Belle

Couplings to Z

- LEET predicts modification of couplings to Z, too.
- Analysis of data near the Z resonance at NLO: (LEP/SLD, Phys. Rep. '06)
 - Perform a fit to Z-pole data within LEET at NLO
 - Take EM/QCD radiative corrections into account
 - Good quality of the fit $(\chi^2/dof = 8.5/8)$
 - Simultaneous determination of α_s and non-standard couplings difficult
 - $\alpha_s(m_Z) = 0.1190$ for the presented result

	Measurement	Fit	$\frac{(O^{meas} - O^{fit})}{\sigma^{meas}}$
Γ_Z [GeV]	2.4952(23)	2.4943	
σ_{had} [nb]	41.540(37)	41.569	_
R_e	20.767(25)	20.785	_
A_{FB}^{l}	0.0171(10)	0.0165	
$A_l(P_\tau)$	0.1465(32)	0.1485	
R_b	0.21629(66)	0.21685	
R_c	0.1721(30)	0.1725	
A_{FB}^{b}	0.0992(16)	0.1012	
A_{FB}^{c}	0.0707(35)	0.0707	
A_b	0.923(20)	0.910	_
A_c	0.670(27)	0.636	
$A_l(SLD)$	0.1513(21)	0.1485	_
$Br(\hat{W} \rightarrow \hat{l}\nu)$	0.1084(9)	0.1089	—

- "A^b_{FB} puzzle" can be solved with universal modification of couplings important point: non-standard couplings of right-handed quarks
- Values for the parameters coherent with the LEET expansion

Summary and outlook

Summary:

- Minimal (not quite decoupling) effective theory: first effects beyond the SM are non-standard couplings of fermions to W and Z
- Determination of EW and QCD parameters correlated
- $K_{\mu 3}^{L}$ decays: Two ways to determine $F_{K}/F_{\pi}f_{+}(0)$
 - → stringent test of couplings of quarks to W
- NA48 result (dispersive representation) → 5σ deviation with SM?
- Other experiments (KLOE, KTeV) analysis using dispersive parametrisation underway
- Couplings to Z: no inconsistencies with the systematics of the effective theory

Outlook:

- Heavy quark sector
- · Loop effects (CP violation, FCNC,....)