EPS 2007, Manchester

Saturday, 21 July 2007

Status of $\Delta lpha_{ m had}$ and g-2

THOMAS TEUBNER

- I. Motivation/Introduction
- II. Input for dispersion integrals: $\sigma_{
 m had}^0$
- III. Recent developments in g-2
- IV. $lpha_{
 m QED}$ at low and high energies
- V. Summary/Outlook

I. Introduction/Motivation

- Why g 2? $a_{\mu} = (g 2)/2 = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{BSM}}$
 - Testing QFT at highest precision; all sectors of the SM relevant.
 - Discrepancy $(a_{\mu}^{exp} a_{\mu}^{SM})$ if clearly established signals existence of BSM.
- Why $\Delta \alpha_{had}$? $\alpha(q^2) = \alpha / (1 \Delta \alpha_{lep}(q^2) \Delta \alpha_{had}(q^2))$

Precise $\alpha(q^2)$ needed for:

- Corrections for data used as input for g 2.
- Determination of α_s and quark masses from total hadronic cross section R_{had} at low energies and of resonance parameters.
- Ingredient in MC generators for many processes.
- $\rightarrow \alpha(M_Z^2)$ a fundamental parameter at the Z scale (the least well known of $\{G_\mu, M_Z, \alpha(M_Z^2)\}$), needed to test the SM via precision fits.

▶ Uncertainties in running α_{QED} and g-2 totally dominated by hadronic contributions.

II. Input for dispersion integrals: $\sigma_{ m had}^0$

▶ Hadronic contributions from low virtualities s not calculable with perturbative QCD
 ▶ rely instead on *dispersion relations*, using experimental data for σ⁰_{had}(s):

$$a_{\mu}^{\text{had,LO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma_{\text{had}}^0(s) K(s) \,, \quad \text{with } K(s) = \frac{m_{\mu}^2}{3s} \cdot (0.63 \dots 1)$$

• Weighting of K extremely towards small s, less so for $\Delta \alpha$.

 $\blacktriangleright \sigma^0$ means without running $\alpha \rightsquigarrow$ iteration needed.

 \rightarrow Data input for $\sigma_{had}^0(s)$ from the experiment CMD-2 at Novosibirsk: (They provide the most precise $e^+e^- \rightarrow \pi^+\pi^-$ data with only 0.6% sys. error)

Figure thanks to Simon Eidelman

How to get the hadronic vac.-pol. contributions with precision: HMNT

- Lowest energies very important, i.e. the hadronic channels 2π, 3π, KK, 4π, 5π, etc. Have to sum ~ 24 exclusive channels and inclusive data for √s above 1.43 2 GeV to get total σ_{had} with high precision.
 - \rightarrow Use of *state-of-the-art* perturbative QCD only above 11.09 GeV.

How to get the hadronic vac.-pol. contributions with precision:

• Lowest energies very important, i.e. the hadronic channels 2π , 3π , KK, 4π , 5π , etc. Have to sum ~ 24 exclusive channels and inclusive data for \sqrt{s} above 1.43 - 2 GeV to get total σ_{had} with high precision.

HMNT

• In each channel: Combine data from many experiments (non-trivial w.r.t. error analysis / correlations / different energy ranges)

How to get the hadronic vac.-pol. contributions with precision:

• Lowest energies very important, i.e. the hadronic channels 2π , 3π , KK, 4π , 5π , etc. Have to sum ~ 24 exclusive channels and inclusive data for \sqrt{s} above 1.43 - 2 GeV to get total σ_{had} with high precision.

HMNT

- In each channel: Combine data from many experiments (non-trivial w.r.t. error analysis / correlations / different energy ranges)
- Before averaging and \sum : Check Radiative Corrections of each data set:
- → Additional final state photons must be fully *included/estimated* → For σ^0 , running coupling $\alpha(q^2)$ effects must be *subtracted* (otherwise double-counting with $a_{\mu}^{\text{had},\text{NLO}}/\text{resum.}$)
- \rightarrow but effects can cancel in $\sigma_{had}/\sigma_{norm}$, and corrections often done already partly... MANY COMPLICATIONS

How to get the hadronic vac.-pol. contributions with precision:

- Lowest energies very important, i.e. the hadronic channels 2π , 3π , KK, 4π , 5π , etc. Have to sum ~ 24 exclusive channels and inclusive data for \sqrt{s} above 1.43 2 GeV to get total σ_{had} with high precision.
- In each channel: Combine data from many experiments (non-trivial w.r.t. error analysis / correlations / different energy ranges)
- Before averaging and \sum : Check Radiative Corrections of each data set:
 - \rightarrow Additional final state photons must be fully <code>included/estimated</code>

 - \rightarrow but effects can cancel in $\sigma_{had}/\sigma_{norm}$, and corrections often done already partly.
 - \longrightarrow PRECISION ONLY FROM TH + MC + EXP

 \rightarrow Important detail: Use of time-like running of $\alpha(s)$:

Figure from F. Jegerlehner

 \rightarrow In total these radiative corrections lead to an additional uncertainty of $\delta a_{\mu}^{\text{had},\text{VP+FSR}} \simeq 1.8 \times 10^{-10} \quad [\sim 10 \cdot \Delta a_{\mu}^{\text{EW}}]$

III. $g - 2$: recent developments			Contributions numerically	HMNT06
Source	contr. to $a_{\mu} imes 10^{11}$		remarks	
QED	$116\ 584\ 718.09\pm0.16$	up to 5-loop! (Kinoshita+Nio, Passera)		
	(was $116\ 584\ 719.35\pm1.43$)	\blacktriangleright incl. recent updates of α		
EW	154 ± 2	2-loop, Czarnecki+Marciano+Vainshtein		
		(agrees very well with Knecht+Peris+Perrottet+deRafael)		
LO hadr.	$7110 \pm 50 \pm 8 \pm 28$	Davier+Eidelman+Hoecker+Zhang '03b (au)		
	$6963 \pm 62 \pm 36$	Davie	er+Eidelman+Hoecker+Zhang '03b (e^+	e ⁻)
	$6924 \pm 59 \pm 24$	Hagiwara+Martin+Nomura+T 03		
new data:	$6894 \pm 42 \pm 18$	HMNT06, incl. new CMD-2, SND, KLOE data		
NLO hadr.	-97.9 ± 0.9	HMNT, in agreem. with Krause '97, Alemany+D+H '98		
L-by-L	136 ± 25	Melnikov+Vainshtein		
< Dec. 2003:	80 ± 40	compilation from Nyffeler, hep-ph/0203243		
			\sim agrees (num.) w. Bijnens+Pallante+Prades	
			and Hayakawa+Kinoshita <i>after</i>	
< Nov. 2001:	(-85 ± 25)		the 'famous' sign error, $2.6\sigma \rightarrow 1.6\sigma$	
\sum	116591804 ± 51		with HMNT06 (e^+e^-)	

SM vs. BNL: A sign of Physics beyond the SM?

The experiment E821 at Brookhaven (Picture of the storage ring with three scientists)

For the first time TH is (slightly) more precise than EXP:

Recent changes

TH: Update of QED, up to 5–loop, new α : was: $(116\ 584\ 719.35 \pm 1.43) \cdot 10^{-11}$ \rightarrow is now: $(116\ 584\ 718.09 \pm 0.16) \cdot 10^{-11}$ TH: Improved LO hadr. (from e^+e^-): Now, with new CMD-2, SND, KLOE: $(6924 \pm 64) \cdot 10^{-11} \longrightarrow (6894 \pm 46) \cdot 10^{-11}$ **EXP:** BNL's '01 μ^- data [PRL92(2004)161802]: $a_{\mu^{-}} = 11\ 659\ 214(8)(3) \times 10^{-10}\ (0.7ppm)$ $\rightarrow a_{\mu} = 116\ 592\ 080(63) \times 10^{-11}\ (0.5ppm)$ ▶ With this input we (HMNT) get: $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{TH}} = (27.6 \pm 8.1) \cdot 10^{-10}, \sim 3.4\sigma$

Discrepancy increased .. still not fully conclusive .. constrain SUSY ..

SUSY contributions in a_{μ} ?

 $a_{\mu}^{\text{SUSY},1-\text{loop}} \simeq \frac{\alpha}{8\pi \sin^2 \theta_W} \tan \beta \operatorname{sign}(\mu) \frac{m_{\mu}^2}{M_{\text{SUSY}}^2}$

They mainly come from:

 $\mu \underbrace{\widetilde{\chi}}_{\widetilde{\nu}} \underbrace{\widetilde{\chi}}_{\widetilde{\nu}} \mu$

 m_0 (GeV)

 $\tan\beta = 10, \mu > 0, A_0 = -300 \text{ GeV}, m_t = 171.4 \text{ GeV}$

SUSY is a good candidate to explain $\Delta a_{\mu}=a_{\mu}^{\rm EXP}-a_{\mu}^{\rm SM}$, but

- no chargino at LEP
- so far no light Higgs
- $\tilde{\tau}$ prob. not LSP
- \bullet + limits from direct searches
- SPS 1a' in 1σ band from g-2

IV. $\alpha_{\rm QED}(q^2)$ at low and high energies

MNHT's evaluation of $lpha_{
m QED}(q^2)$ compared to other parametrizations: HMNT avail. soon

- Differences between parametrizations significant
- \bullet Slight shift in $\alpha(M_Z^2)\text{, see below}$
- What is in the MCs used by the experiments?
- $\bullet~g-2$ and EW precision fits need better control / smaller error

What about $\Delta lpha (M_Z^2)$?

• With the same compil. of σ_{had} as for g - 2 we find: $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02768 \pm 0.00022$ i.e. $\alpha(M_Z^2)^{-1} = 128.937 \pm 0.030$ (HMNT '06)

Other compilations:

Group	$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	remarks	
Burkhardt+Pietrzyk '05	0.02758 ± 0.00035	data driven	
Troconiz+Yndurain '05	0.02749 ± 0.00012	pQCD	
Kühn+Steinhauser '98	0.02775 ± 0.00017	pQCD	
Jegerlehner '06	0.02761 ± 0.00023	data driven/pQCD	
$(s_0^2 = (10 \text{GeV})^2)$	0.02759 ± 0.00017	Adler fct, pQCD	
HMNT '06	0.02768 ± 0.00022	data driven	

Adler function:
$$D(-s) = \frac{3\pi}{\alpha} s \frac{\mathrm{d}}{\mathrm{d}s} \Delta \alpha(s) = -(12\pi^2) s \frac{\mathrm{d}\Pi(s)}{\mathrm{d}s}$$

allows use of pQCD and minimizes dependence on data.

What about $\Delta lpha (M_Z^2)$?

• With the same compil. of σ_{had} as for g - 2 we find: $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02768 \pm 0.00022$ i.e. $\alpha (M_Z^2)^{-1} = 128.937 \pm 0.030$ (HMNT '06)

LEP EWWG 07:

V. The next round

Where is improvement needed most urgently?

Pie diagrams of contributions to a_{μ} and $\alpha(M_Z^2)$ and their errors²:

Summary/Outlook:

- ▶ g-2: at present a 3.4σ deviation persists, possibly solved by SUSY.
- At BNL: proposed upgrade of E821, E969, designed to achieve 0.2ppm.
- J-PARC, a new high intensity proton accelerator under construction near KEK could host a radically new g 2 exp. Improvement by a factor 5-10 possible.
- → For further improvements, both g 2 and $\Delta \alpha$ require more accurate data and TH! *The prospects are good:*
 - Further Radiative Return analyses from KLOE, Frascati are in progress/reported; will check $\pi\pi$ down to the threshold and hopefully squeeze the error.
 - BaBar is very successful with Rad. Ret. for higher multiplicity final states. Opportunities for BELLE?
 - Even better prospects (factor 2–3 possible) with VEPP2000, possibly DANAE/KLOE-2.
 - At higher energies, analyses from CLEO-III at Cornell and BES-II at BEPC in Beijing progressing; soon BEPCII with BES-III will start.