The CMS Magnet Test and Cosmic Challenge

Hannes Sakulin, CERN/PH On behalf of the CMS Collaboration

European Physical Society HEP 2007 Conference Manchester, July 21, 2007

0

Geneva, Switzerland

Compact Muon Solenoid

CERN main site

Large Hadron Collider

CMS Magnet Test and Cosmic Challenge

- Since 2000: Have been assembling CMS in a surface building
 - Modular design: 5 wheels and 6 endcap disks that can be (and partly have been) lowered, separately
 - □ Assembly of yoke, installation of detectors, solenoid, service, cabling
 - □ Cope with civil engineering schedule
- In 2006: Major parts of commissioning on the surface
 - Magnet Test
 - Closing and opening of CMS
 - Coil commissioning to 4 Tesla
 - Obtain detailed field map
 - □ In parallel: Cosmic Challenge
 - Operate ~1/20 of CMS integrated with central services, trigger, DAQ
 - Take combined data with cosmic muons
 - Two Phases
 - Phase 1: operate (parts of) all participating CMS detectors
 - Phase 2: Field mapping, operate without tracker and ECAL

Cosmic Challenge detector

parts of: inner barrel layer 2&3, outer barrel layer 1&5, endcap disk 9

Hannes Sakulin, CERN/PH

Installation

Hannes Sakulin, CERN/PH

Closing and Opening CMS

Closed CMS without major problems

Air-pads and grease pads used to move the 5 barrel wheels and 6 endcap disks

Commissioning of 4T superconducting coil

4-layer coil winding

2005: insertion into cryostat

Feb 2006: smooth cool-down to 4K

Coil contraction of ~27 mm during cool-down

Field Mapping

during Phase 2

Field Mapper: non-magnetic device on special rails, airdriven mechanics (B-field!): O(10⁻⁴) precision at 4T

10 Hall sensors

- 2 NMR probes at r=0m, r=1.72m (≈HCAL inner radius)
- Map entire volume inside HCAL
 - □ 48 positions in phi
 - □ 142 positions in z
 - □ ~50 hours per map
- Field mapping performed at 0T, 2T, 3.5T, 3T, 3.8T, 4T

NMR and Hall probe measurements & TOSCA Simulation

at r=1.72m, horizontal plane (NMR and NBS at ϕ =0, PBS at ϕ =180)

PBS: positive B sensor, NBS: negative B sensor

measurement and simulation !

Cosmic Challenge: Trigger System

- Most components of final trigger system tested
- Two alternative setups
 - □ "Full" trigger chain

 - Trigger decision and Trigger Control in Global Trigger
 - Local Trigger Setup
 - Trigger decision in regional muon and calorimeter triggers
 - Trigger distribution and Trigger Control in Local Trigger Board
- Successfully synchronized entire trigger system
 - More difficult with cosmic muons than at LHC

Main Triggers used (plus many others for dedicated studies)

- **DT Inclusive**: ≥ 2 chambers (same sector & wheel)
- **DT Pointing to center of detector** (constraint on η segments)
- **CSC**: Single chamber (≥ 4/6 layers) or two-chamber coincidence
- **RPC**: ≥ 5/6 planes (single wheel)
- **RPC pointing**: ≥ 5/6 planes in wheel 1 or 2, pointing to center
- HCAL: Coincidence of Minimum Ionizing Particle (MIP) signals in upper and lower part of HCAL Barrel (HB) detectors

Trigger Rate (cosmics) 100 .. 300 Hz (final CMS: 100 kHz) The CMS Magnet Test and Cosmic Challenge

Cosmic Challenge: Central DAQ System

Data Taking with central DAQ

- All software for detectors, trigger, DAQ controlled by Run Control System
- All software monitored using common Monitoring Infrastructure
- Operated round-the clock (when field was on)
- Good data taking efficiency
 - effort of shift crew to keep error recovery time short
 - flexible central DAQ system: possibility to quickly disable subsystems or individual FEDs at start of run ("masking")

Phase 1 (with Tracker and ECAL) 15 + 10 Mio events with / without field 5k + 6.5k "central" tracks (hitting MTCC tracker)

Selected observations: Alignment

Selected results Tracker

- ~ 10k tracks reconstructed mostly triggered by 'pointing' triggers
- Signal to noise ratio as expected: 28 (34) for thin (thick) sensors
- Pedestals and electronic noise not significantly influenced by B-field:

ECAL

 Observed muons in coincidence with Tracker and muon chambers (special muon selection for MTCC)

- Channel electronics noise exactly as envisaged: 40 MeV
- Pedestal r.m.s unchanged by B-field

Selected results: HCAL

- Muon signals observed in all parts of HCAL using DT and CSC triggers
- Used HCAL to generate MIP triggers
- Problem found in HCAL Outer Barrel (HO): Increased cross-talk between Hybrid Photo-Diode pixels in magnetic field
 - □ Cause: angle of field to HPD axis found to be 25° (55°) different from simulation in wheels 1 and 2 (wheel 0)
 - □ Solution: move Hybrid Photo-Diode boxes deeper into gap (different field conditions)

Selected results: Muon Systems

- All three muon systems successfully used, both in trigger and reconstruction
 - Modified track-finding algorithms without vertex constraint
- Many dedicated studies

More details: presentation by M. Fernandez (Friday)

□ E.g. Influence of B-field on drift velocity in drift tubes

Muon spectra

Azimuthal distribution measured by DTs.

Cosmic muons data normalized to Monte Carlo simulation

Reasonable agreement between data and simulation.

Almost every aspect of final CMS from detector to CMSSW software had to work to produce these plots.

Summary

- Stably operated the magnet at nominal field strength of 4T
- Mapped the magnetic field in the entire volume inside HCAL with high precision
- Successfully integrated and operated ~ 1/20 of CMS
- Took cosmic muon data with all detectors at B=4 T
- Performed many dedicated studies
- Found some problems that are now being corrected
- CMS Collaboration performed very well as a team !!!

HCAL **ECAL** Tracke **HCAL**

> Run 2605 / Event 3981 / B=3.8 T / 27.08.06, 22h Muon traversing DT, RPC, HCAL, ECAL, Tracker

The CMS Magnet Test and Cosmic Challenge

17

Hannes Sakulin, CERN/PH

BACKUP SLIDES

The Compact Muon Solenoid Experiment

CMS

- Multi-purpose detector
- Broad physics programme
- 55 Mio. Channels to read out
- 1 MB event size after zero suppression

Magnet fast discharge behavior

Tested fast discharge from several initial currents

Normalized magnet current during a fast discharge triggered at t=30 s

- Discharge through external dump resistor banks
- Magnet turns into normal conductor (quench)
 - □ Internal resistance increases up to 0.1 Ω (at I₀=19 kA)
- Average cold mass temperature increases to T=70 K (at I₀=19kA)
 - □ Inductive coupling with mandrel protects against high thermal gradients
 - Difference of 32.3 K between hottest and coldest part of cold mass
- Up to 3 days needed to re-cool coil

Cosmic Challenge: Trigger System

Trigger Rate (cosmics) 100 .. 300 Hz (final CMS: 100 kHz)

- Local Trigger Controller used for most of MTCC
 - □ Trigger signals from local or regional triggers
- Global Trigger and Global Muon Trigger used at the end of MTCC phase 2
 - □ Full trigger chain for DT and CSC triggers

Major effort to synchronize system

- ✓ Detector data to triggers
- ✓ Trigger w.r.t. each other
- ✓ DT and CSC triggers (overlap region)
- More difficult with cosmics than at LHC

Main Triggers used (plus many others for dedicated studies)

- DT Inclusive: ≥ 2 chambers in same sector & wheel
- DT Pointing: above + select tracks pointing to center of detector by constraint on η segments
- **CSC**: One track stub in any chamber with \geq 4 out of 6 layers
- **RPC1**: ≥ 5 out of 6 planes in wheel +1
- **RPC2**: \geq 5 out of 6 planes in wheel +2
- **RPC pointing**: ≥ 5 / 6 planes in wheel +1 or +2, pointing to center
- HCAL: Coincidence of Minimum Ionizing Particle (MIP) signals in upper and lower part of HCAL Barrel (HB) detectors

Run Control and Monitoring System

Run Control Display

Control of all online software (Detectors, Trigger, DAQ)

Driven by state machine

Masking: possibility to disable individual subsystems / FEDs before start of run

Halted	OFF			
Initialize	Connect Configure Ge	at Ready Start	Pause	Resume Stop Hait
EM	Click (sTTS	Subsustam	State	C% Marsage
Tim	TTC:ECAL	Subsystem	State	07% Message
Out		EUAL		0%
Out	ITC:HCAL	HCAL		0%
_	TTC:TRACKER	TRACKER		
Out		INACKEN		0%
<u>In</u>	TTC:TRG	TRG		0%
_	TTCDT	DT		
<u>IN</u>				0%
Out	TTC:CSC	CSC	6	SI # tailored to MTCC
_	TTC:RPC	PPC		
Qut		nru	r	Disable individual Subdet EED
ln –		DAQ		Sisable Individual Subdet, FLD
	sLink color encoding			
lo Backpre	essure Backpressure	8		
	sTTS color encoding			
Ready Wa	rning Busy Error Sync lo	st Disconnected		

MTCC-Run 2251			Evt-	No <mark>401</mark>	70	Trg-Rate 26.6Hz (eff 37.5%) Trg						Input <mark>D</mark>							
RL-FBO-RU	summa	ry																	
	CTC TK				16	ECAL			HCAL						CSC/TF			/TF	RPC
expected FED ID	815	53	55	57	59	600	601	700	701	702	703	704	705	750	751	760	770	780	790
received FED ID	815	53	55	57	59	0	0	700	701	702	703	704	705	750	751	760	770	0	0
CMCversion	cf01001c	cf01001e	cf01001e	cf01001c	cf01001c	cf01001e	cf01001e	cf01001c	cf01001e	cf01001e	cf01001c	cf01001e	cf01001e	cf01001e	cf01001e	cf01001e	cf01001e	cf01001e	0
FED clk [MHz]	80.14	80.14	80.14	80.14	80.13	0	0	31.99	32	32	31.99	31.99	31.99	62.48	62.49	78.11	40.07	0	0
LFF time	0.000s	0:14:17	0:02:30	0:14:17	0:14:20	0.000s	0.000s	0.000s	0.000s	0.000s	0.000s	0.000s	0.000s	0.001s	0.000s	0.000s	0.000s	0.000s	0.000s
BXNumber	3062	687	401	687	687	0	0	3062	3062	3062	3062	3062	3062	3064	3064	3064	0	0	0
triggerNum	40133 0x9cc5	40134 0x9cc6	40134 0x9cc6	40134 0x9cc6	40134 0x9cc6	0 0x0	0 0x0	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40133 0x9ec5	40134 0x9cc6	0 0x0	0 0x0
triggerCount	40133 0x9cc5	40134 0x9cc6	40134 0x9cc6	40134 0x9cc6	40134 0x9cc6	0 0x0	0 0x0	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40133 0x9cc5	40134 0x9cc6	0 0x0	0 0x0
slinkBadCRC	0	0	714	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
fedBadCRC	0	0	359	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
backpressure	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
myrfbStatus	running	running	running	running	running	running	running	running	running	running	running	running	running	running	running	running	running	running	running
myrfb occupancy	0%	83%	46%	83%	83%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
myrbadEvtNo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
instance/[slot]	0/[1]	12/[1]	13/[2]	14/[3]	15/[4]	10/[13]	11/[14]	4/[6]	5/[7]	8/[10]	9/[11]	6/[8]	7/191	1/[2]	3/[3]	2/[4]	16/[6]	17/[7]	18/[9]
Detector FMM	n.a.	R_8	R_8	R_8	R_8	off	off	R_8	R_8	R_8	R_8	R_8	R_8	R_8 R_8 R_8	R_8 R_8	R_8 R_8	R_8	off	off
Merger FMM	n.a.	R_8			0	ff	R_8							R_8		R_8		off	
	CTC	ТК				EC	AL	HCAL						CSC/TF		DT/TF		RPC	
RU last evtNo	n.a. (0)	n.a. (4)				n.a	(3)		n.a. (2)					n.a. (1)			n.a. (5)		n.a. (6)
myrfbStatus	n.a. (0)	n.a. (4)			n.a	. (3)	i	n.a. (2)					n.a. (1)			n.a. (5)		n.a. (6)	
gaveToMyrinetFB	n.a. (0)	n.a. (4)			n.a	. (3)	n.a. (2)					n.a. (1)			n.a. (5)		n.a. (6)		
myrfb occupancy	n.a. (0)	n.a. (4)			n.a	.(3)	n.a. (2)					n.a. (1)			n.a. (5)		n.a. (6)		
Host (RU inst)	.n.a.	rubu28 (inst 3)			rubu27	(inst 2)	rubu26 (inst 1)					rubu25 (inst 0)			rubu29 (inst 4)		rubu30 (inst 5)		
RU avg frag Size	n.a.	175.9 +/- 0.00 kB (n=34)			0.0 +/- 0.0	0 kB (n=0)	76.9 +/- 0.02 kB (n=64)					5.4 +/- 4.89 kB (n=57)			8.6 +/- 0.28 kB (n=64)		0.0 +/- 0.00 kB (n		
RU ave throughput	n.a.	5920.1kB/s (dt=1s)			0.0kB/s	0.0kB/s (dt=1s)			4869.3kB/s (dt=1 s)				307.1kB/s (dt=1s)			542.8kB/s (dt=1s)		0.0kB/s (dt=1s)	

