CMS Online Event Selection

Pedrame Bargassa Rice University, Houston

EPS Detectors & Data Handling 21st July 2007

- Introduction / Challenges
- Level 1 Trigger (L1) :
 - Introduction to algorithms
- High Level Trigger (HLT) :
 - > Introduction to algorithms
- L1 & HLT performance study
 - Rates
 - HLT timing
- Conclusion / Perspectives

Introduction / Challenges

QCD :

- σ : Orders of magnitude greater than any "interesting" channel
- Contaminating lepton triggers :
 - Jet fluctuation -> electron background
 - π, K, B decays -> muon background
- Some signal (trilepton) have soft leptons, in the (very) high QCD kinematic region

Road to go :

≻

- Early rejection of huge QCD in DAQ chain & Dealing with 40 MHz : Level 1 Trigger
- Dealing with 50 kHz & selection physics : High Level Trigger
 - L1 & HLT : Selecting
 - Isolated leptons, photons
 - > τ -, central-, forward-jets
 - > (High) E_{T} , E_{T}^{miss}

Reduce overwhelming background : 40 MHz -> 50 kHz Fast processing

- Customized hardware processors
- Algorithms : Implemented in reprogrammable FPGAs
- Information from Calorimeter & Muon detectors :
 - Muon triggers
 - > Electron & Photon triggers
 - > Jet & missing E_{T} triggers
- > Synchronous & pipelined :
 - Bunch x : 25 ns
 - > Decision/propagation time $\sim 3 \ \mu s$

L1 algoríthm example : Electrons & Photons

High Level Trigger : Global picture

Bring 50 kHz -> 150 Hz Select as efficiently as possible " σ ~0.1 pb physics"

Ability : Build full events @ full L1 output rate

- **Code :** As close as possible to offline reconstruction
- Seeded by L1
- Runs on (large) **CPU farms**
- Trigger "Levels" :
 - 2 : Use of calorimeter and muon detectors
 - > 2.5 : Use of pixel tracker detector
 - > 3 : Use of tracker
 - **Regionality** :
 - Reconstruction in a small (η, ϕ) region where there are previous levels seeds (L1, L2, L2.5)
 - > Data unpacking : Also regional

HLT: Object algorithms

Jets : Reconstruction with iterative cone algorithm $\mathbf{E}_{\mathbf{T}}^{\text{miss}}$: Reconstruction with vector sum of towers > $\mathbf{E}_{\text{threshold}}$

- **Muons**: Iterative refinement of p_{T} ≻
 - L2: Reconstruction in Muon system / Calo. Isolation ≻
 - **L3**: Reconstruction in {Muon+Tracker} system / Pixel Isolation ۶
- **L2**: ECAL/HCAL reconstruction/isolation : clustering (bremsstrahlung e/γ : recovery), $E_T > E_{threshold}$
 - **L2.5** : Pixel matching (electron) ۶
 - L3 : \geq
 - Photon : Track-isolation
 - Electron : Track reconstruction / Track isolation
- **L2**: Calo. Reconstruction + Isolation τ:
 - L3 : ≻
 - Hard track ($p_{\tau}^{\text{max}} > 40 \text{ GeV/c}$) with $\Delta R < 0.1$ of a jet axis ۶
 - Track Isolation : No $p_{_{T}} > 1$ GeV/c track within ۶ $0.03 < \Delta R < 0.4$ the hard track

Studies motivated by the need of purchasing the Filter Farm at the end of 2007

 $1^{\mbox{\scriptsize st}}$ timing measure on a representative set of (simulated) samples, with a full physics trigger-menu

- Get a L1 bandwidth as realistic as possible
 - > Use full L1-emulator (emulation of the harware at the bit-level)
 - > Ensure that all L1 bandwidth is used by HLT
- > Use software framework to be used for data-taking
 - Include data-unpacking times for the 1st time
- Fit L1/HLT triggers in 17 kHz/150 Hz
 - > Balance the trigger menus

LHCC note : LHCC-CERN 2007-021 , LHCC-G-134

$L1: Triggers \& Rates for L = 10^{32} cm^{-2} s^{-1}$ (2008 physics-run)

L1 Trigger	Threshold (GeV)	Prescale	Rate (kHz)
A_SingleMu3	3	1000	0.01 ± 0.00
A_SingleMu5	5	1000	0.00 ± 0.00
A_SingleMu7	7	1	1.11 ± 0.04
A_SingleMu10	10	1	0.47 ± 0.03
A_SingleMu14	14	1	0.18 ± 0.02
A_SingleMu20	20	1	0.09 ± 0.01
A_SingleMu25	25	1	0.06 ± 0.01
A_SingleIsoEG5	5	10000	0.00 ± 0.00
A_SingleIsoEG8	8	1000	0.01 ± 0.00
A_SingleIsoEG10	10	100	0.04 ± 0.01
A_SingleIsoEG12	12	1	2.47 ± 0.06
A_SingleIsoEG15	15	1	1.10 ± 0.04
A_SingleIsoEG20	20	1	0.32 ± 0.02
A_SingleIsoEG25	25	1	0.14 ± 0.01
A_SingleEG5	5	10000	0.00 ± 0.00
A_SingleEG8	8	1000	0.01 ± 0.00
A_SingleEG10	10	100	0.04 ± 0.01
A_SingleEG12	12	100	0.03 ± 0.01
A_SingleEG15	15	1	1.51 ± 0.05
A_SingleEG20	20	1	0.52 ± 0.03
A_SingleEG25	25	1	0.25 ± 0.02

$L1: Triggers \& Rates for L = 10^{32} cm^{-2} s^{-1}$ (2008 physics-run)

L1 Trigger	Threshold (GeV)	Prescale	Rate (kHz)		
A_SingleMu3	A_Singl	_eJet70	70	100	0.02 ± 0.01
A SingleMu5	(A_Singl	eJet100) 100	1	0.43 ± 0.02
A CingleMu7	A_Singl	eJet150	150	1	0.07 ± 0.01
A_SINGIEMU/	A_Singl	eJet200	200	1	0.02 ± 0.01
A_SingleMu10	A_Single	TauJet40	40	1000	0.02 ± 0.01
A_SingleMu14	A_Single	TauJet80	80	1	0.68 ± 0.03
N. SipaloMu20	A_Single1	auJet100	100	1	0.20 ± 0.02
	A_HT	T250	250	1	2.56 ± 0.06
A_SingleMu25	A_HT	T300	300	1	0.65 ± 0.03
A_SingleIsoEG5	A_HT	Τ400	400	1	0.08 ± 0.01
A SingleIsoFG8	A_HT	Т500	500	1	0.02 ± 0.00
	A_E1	TM2 0	20	10000	0.00 ± 0.00
A_SingleIsoEGIU	A_E1	CM3 0	30	1	5.69 ± 0.09
A_SingleIsoEG12	A_E1	CM40	40	1	0.40 ± 0.02
A SingleIsoEG15	A_E1	CM50	50	1	0.05 ± 0.01
<u>λ</u> αί].τπαρο	A_E1	CM60	60	1	0.01 ± 0.00
A_SingleisoEGZV	A Douk)leMu3) 3	1	0.28 ± 0.02
A_SingleIsoEG25	A_Doubl	eIsoEG8) 8	1	0.28 ± 0.02
A_SingleEG5	A_Double	elsoEG10	10	1	0.08 ± 0.01
A SingloFC8	A_Douk)leEG5	E	10000	0.00 ± 0.00
	A_Doub	leEG10) 10	1	0.19 ± 0.02
A_SingleEG10	A_Doub	leEG15	15	1	0.05 ± 0.01
A_SingleEG12	A_Doubl	_eJet70	70	1	0.58 ± 0.03
A_SingleEG15	A_Doubl	eJet100	100	1	0.11 ± 0.01
A SingleEG20	A_Double	TauJet20	20	1000	0.02 ± 0.01
	A_Double	TauJet30		100	0.08 ± 0.01
A_SingleEGZ5	(A_Double	TauJet40) 40	1	2.36 ± 0.06

Pedrame Bargassa, Rice University, Houston

$L1: Triggers \& Rates for L = 10^{32} cm^{-2} s^{-1} (2008 physics-run)$

L1 Trigger	Threshold (GeV)	Prescale	Rate (kHz)				
A_SingleMu3	A_Sing]	LeJet70	A_Mu	3_IsoEG5	3,5	1	0.95 ± 0.04
N. CingloMuE	(A_Singl	eJet100	A_Mu5	_IsoEG10	5,10	1	0.04 ± 0.01
A-SINGIEMOS	A_Sing]	eJet150	- A_M	u3_EG12	3,12	1	0.09 ± 0.01
A_SingleMu7	A Singl	a.Tat 200	- A_Mu	.3_Jet15	3,15	20	0.30 ± 0.02
N.C.ingloMu10				15_Jet15	5,15	1	1.62 ± 0.05
A_SINGIEMUIV	A_SINGIE	TauJet40	A_Mu	13_Jet70	3,70	1	0.10 ± 0.01
A_SingleMu14	A_Single	TauJet80	A_Mu	15_Jet20	5,20		1.18 ± 0.04
	A_Single]	CauJet100	CA_Mu5.	TauJet20	5,20	1	0.66 ± 0.03
A_SingleMu20	A_HT	Т250	A_Mu5	TauJet30	5,30	1	0.38 ± 0.02
A SingleMu25	ע עד	T300	_ A_ISOE	G10_Jet15	10,15	20	0.15 ± 0.01
		IJVV m400	_ A_Isob	G10_Jet30	10,30	1	1.95 ± 0.05
A_SingleIsoEG5	A_HT	1400	A_lsob	G10_Jet20	10,20	1	3.04 ± 0.06
A SinglaTeaPC9	A_HT	T500	A_Isob	G10_Jet70	10,70	1	0.26 ± 0.02
M-DINGIELPORGO	A_E]	TM2 0	A_ISOEG	10_TauJet20	10,20	1	1.95 ± 0.05
A_SingleIsoEG10	A ET	M30	- Alsoeg	10_TauJet30	10,30	1	1.33 ± 0.04
CinclateoPC10	7.07	TMA O	_ A_TauJ	et30_ETM30	30,30	1	1.96 ± 0.05
ALSINGIEISOEGIZ	A_E]	11140	A_TauJ	et30_ETM40	30,40	1	0.26 ± 0.02
A_SingleIsoEG15	A_E'J	.M50	A_Tr	ipleMu3	3	1	0.01 ± 0.00
	A_E7	CM60	A_Tri	pleJet50	50	1	0.22 ± 0.02
A_SinglelsoEG20	A Douk	0]eM113	= A_Qu	adJet30	30	1	0.58 ± 0.03
A SingleIsoFC25	A Doubl			las_HTT10	10	large	0.40
11.0 1119101000020	ALDOUDI	elsorgo	A_Ze	eroBias	0	large	0.40
A_SingleEG5	A_Double	elsoEG10		Total L1 Trigge	r Rate (kHz)		16.67 ± 0.15
A SingloFC8	A_Douk	pleEG5					
VPATIIÀ TERRO	A_Doub	leEG10	-	. .			•

- **Muon :** 1.5 kHz
- **e**γ : 2.5 kHz
- > **Jets :** 3.5 kHz
- τ:3 kHz
- > **MET :** 5.5 kHz
- Cross-channel : 8 kHz

Safety factor 3 for L1 bandwidth :

- Uncertainty on QCD cross-sections (Tevatron : factor=2)
- Not simulated conditions : beam, noise spikes, electronics...
- **Lepton thresholds low :** Study efficiencies @ low p_T
- Jet thresholds : Covers range -> Tevatron
- **L1 MET :** Combined with jets @ HLT
- Cross-channel triggers present @ L1

Pedrame Bargassa, Rice University, Houston

A_DoubleEG15 A_DoubleJet70

A_DoubleJet100

A_DoubleTauJet20

A_DoubleTauJet30

A_DoubleTauJet40

A_SingleEG10

A_SingleEG12

A_SingleEG15

A_SingleEG20

A_SingleEG25

HLT: Triggers & Rates for $\mathcal{L} = 10^{32} \text{ cm}^2 \text{ s}^{-1}$ (2008 physics-run)

HLT path	L1 condition	Thresholds (GeV)	HLT Rate (Hz)	Total Rate (Hz)
Single Isolated μ	A_SingleMu7	11	18.3 ± 2.2	18.3
Single Relaxed μ	A_SingleMu7	16	22.7 ± 1.5	37.7
Double Relaxed μ	A_DoubleMu3	(3, 3)	12.3 ± 1.6	48.5
$J/\psi ightarrow \mu\mu$	A_DoubleMu3	$(3, 3) \ M_{\mu\mu} \in [2.9, 3.3]$	2.0 ± 0.8	49,4
$\Upsilon \to \mu \mu$	A_DoubleMu3	$(3, 3) \ M_{\mu\mu} \in [8, 12]$	1.8 ± 0.5	50.5
$Z ightarrow \mu \mu$	A_DoubleMu3	(7, 7) $M_{\mu\mu} \in [80, 100]$	0.1 ± 0.0	50.5
Triple Relaxed μ	A_TripleMu3	(3, 3, 3)	0.1 ± 0.0	50.5
Same-sign double μ	A_DoubleMu3	(3, 3)	5.7 ± 1.2	52.5
$b \rightarrow \mu$ tag 1-jet Prescale 20	A_Mu5_Jet15	$\frac{20}{\Delta R(\mu, j) < 0.4}$	4.0 ± 0.1	56.1
$b \rightarrow \mu$ tag 2-jets	A_Mu5_Jet15	$120, p_T^{\text{rel}}(\mu) > 0.7$ $\Delta R(\mu, j) < 0.4$	0.5 ± 0.0	56.1
$b \rightarrow \mu$ tag 3-jets	A_Mu5_Jet15	70, $p_T^{\text{rel}}(\mu) > 0.7$ $\Delta R(\mu, j) < 0.4$	0.3 ± 0.0	56.1
$b \rightarrow \mu$ tag 4-jets	A_Mu5_Jet15	40, $p_T^{rel}(\mu) > 0.7$ $\Delta R(\mu, j) < 0.4$	0.4 ± 0.0	56.1
$b ightarrow \mu ext{tag} H_T$	A_HTT250	$\begin{array}{c} 300, p_T^{\rm rel}(\mu) > 0.7 \\ \Delta R(\mu, j) < 0.4 \end{array}$	2.6 ± 0.2	56.6
$b ightarrow J/\psi(\mu\mu)$	A_DoubleMu3	(4, 4) $M_{\mu\nu} \in [2.95, 3.25]$	0.7 ± 0.1	56.8
μ + <i>b</i> -jet	A_Mu5_Jet15	(7, 35)	0.1 ± 0.0	56.8
$\mu + b \rightarrow \mu$ -jet	A_Mu5_Jet15	(7, 20)	0.1 ± 0.1	56.8
μ + jet	A_Mu5_Jet15	(7, 40)	6.3 ± 0.7	60.8
e+µ	*	(8, 7)	0.5 ± 0.4	61.2
$e + \mu$ relaxed	*	(10, 10)	0.1 ± 0.0	61.3
$\mu + \tau$	A_Mu5_TauJet20	(15, 20)	0.0 ± 0.0	61.3
Single-Jet	A_SingleJet150	200	9.3 ± 0.1	70.1
Double-Jet	A_SingleJet150 A_DoubleJet70	150	10.6 ± 0.0	74.4
Triple-Jet	t	85	7.5 ± 0.1	78.8
Quad-Jet	ţ	60	3.9 ± 0.1	80.5
E_T	A_ETM40	65	4.9 ± 0.7	84.0
Acopl. Double-Jet	A_SingleJet150 A_DoubleJet70	125	1.4 ± 0.0	84.0
Acopl. Single-Jet + E_T	A_ETM30	(100, 60)	1.6 ± 0.0	84.2
Single-Jet + E_T	A_ETM30	(180, 60)	2.2 ± 0.1	84.4
Double-Jet + E_T	A_ETM30	(125, 60)	1.0 ± 0.0	84.4
Triple-Jet + E_T	A_ETM30	(60, 60)	0.6 ± 0.0	84.4
Quad-Jet + E_T	A_ETM30	(35, 60)	1.2 ± 0.1	84.6
$H_T + E_T$	A_HTT300	(350, 65)	4.4 ± 0.1	86.2
Single Jet Prescale 10	A_SingleJet100	150	3.5 ± 0.0	87.9
Single Jet Prescale 100	A_SingleJet70	110	1.5 ± 0.0	89.1
Single Jet Prescale 1000	A_SingleJet30	60	0.8 ± 0.4	89.9

HLT: Triggers & Rates for $L = 10^{32}$ cm⁻² s⁻¹ (2008 physics-run)

HLT path	L1 condition	Thresholds (GeV)	HLT Rate (Hz)	Total Rate (Hz)		
Single Isolated μ	A_SingleMu7	11	18.3 ± 2.2	18.3	1	
Single Relaxed µ	A_SingleMu7	16	22.7 ± 1.5	37.7		
Double Relaxed μ	A_DoubleMu3	(3, 3)	12.3 ± 1.6	48.5		
$J/\psi ightarrow \mu\mu$	HLT path	L1 condition	L1 condition Thr		HLT Rate (Hz)	Total Rate (Hz)
$\Upsilon \rightarrow \mu \mu$	VBF Double-Jet + $\!$	A_ETM30	(40, 60)	0.2 ± 0.0	89.0
1.1.1	SUSY 2-jet+ E_T	A_ETM30	(8	0,20,60)	2.0 ± 0.1	90.4
$Z \rightarrow \mu \mu$	Acopl. Double-Jet + E_T	A_ETM30	(60, 60)	1.0 ± 0.0	90.4
	Single Isolated e	A_SingleIsoE	G12	15	17.1 ± 2.3	107.5
Triple Relaxed μ	Single Relaxed e	A_SingleEG	15	17	9.6 ± 1.3	109.3
Same-sign double μ	Double Isolated e A_DoubleIsoEG8		G8	10	0.2 ± 0.1	109.4
$b \rightarrow \mu$ tag 1-jet	Double Relaxed e	A_DoubleEG:	10	12	0.8 ± 0.1	109.9
Prescale 20	Single Isolated γ	A_SingleIsoE	G12	30	8.4 ± 0.7	118.1
h - u tag 2-jets	Single Relaxed γ	A_SingleEG:	15	40	2.8 ± 0.2	118.5
$b \rightarrow \mu \log 2 - \beta \ln b$	Double Isolated γ	A_DoubleIso	CG8 ((20,20)	0.6 ± 0.4	119.0
E	Double Relaxed γ	A_DoubleEG:	10 ((20,20)	1.8 ± 0.5	120.1
$b \rightarrow \mu \text{ tag } \beta \text{-jets}$	High $E_T e$	A_SingleEG	15	80	0.5 ± 0.0	120.4
	High $E_T e$	A_SingleEG:	15	200	0.1 ± 0.0	120.4
$b \rightarrow \mu$ tag 4-jets	Lifetime b-tag 1-jet	0		180	1.3 ± 0.0	120.5
	Lifetime b-tag 2-jets	0		120	2.1 ± 0.0	121.2
$b \rightarrow \mu \operatorname{tag} H_T$	Lifetime b-tag 3-jets	0		70	1.7 ± 0.0	121.8
	Lifetime o-tag 4-jets	0		40	1.8 ± 0.0	122.6
$b \rightarrow J/\psi(\mu\mu)$	Single -	Q A CinalaTau T	+ 0.0	4/0	2.3 ± 0.1	123.1
	Single 7	A_SINGLEIAUU	100	15	18 ± 0.2	123.2
$\mu + b$ -jet	$\tau + \mu T$ Double τ (Cale (Piyel)	A DoubleTour	+ 40	15	1.0 ± 0.2	124.7
$\mu + b \rightarrow \mu$ -jet	e + biet	A IsoEC10 Jo	+20 (10 35)	0.1 ± 0.0	129.4
μ + jet	e + jet	A IsoEG10 Je	+30 (12 40)	116 ± 12	135.8
$e + \mu$	e+T	A IsoEG10 Tau	[et 20] (12, 20)	0.2 ± 0.0	135.8
$e + \mu$ relaxed	Prescaled e/γ	Se	e Table 3.9	,,	5.0 ± 0.0	140.8
$\mu + \tau$	Prescaled µ	Se	e Table 2.4		3.0 ± 0.0	143.8
Single-Jet	Min.Bias	A_MinBias_HT	T10	-	1.5 ± 0.0	145.3
Double Ist	Pixel Min.Bias	A_ZeroBias	5	9 <u>—</u> 9	1.5 ± 0.0	146.8
Double-jet	Zero Bias	A_ZeroBias	5	81 <u></u> 8	1.0 ± 0.0	147.8
Triple-Jet		Total HLT r	ate (Hz)			148 ± 4.9
Ouad-Iet	İ	60	3.9 ± 0.1	80.5		1
E_T	A_ETM40	65	4.9 ± 0.7	84.0		_
Acopl. Double-Jet	A_SingleJet150 A_DoubleJet70	125	1.4 ± 0.0	84.0		epto
Acopl. Single-Jet + E_T	A_ETM30	(100, 60)	1.6 ± 0.0	84.2	1 P	nysics
Single-Jet + E_T	A_ETM30	(180, 60)	2.2 ± 0.1	84.4	1 -	
Double-let + E_T	A_ETM30	(125, 60)	1.0 ± 0.0	84.4		/omiot
Triple-let + E_T	A ETM30	(60, 60)	0.6 ± 0.0	84.4	†´ ▼	anet
$Ouad-let + E_T$	A ETM30	(35, 60)	1.2 ± 0.1	84.6	1.	Т
Hr + Hr	A HTT300	(350,65)	44 ± 0.1	86.2		111
Single let Prescale 10	A SipgloJot100	150	35 ± 0.0	87.0	-	
Single let Proceede 100	A Single Tet 70	110	15+00	80.1	I> P	reers
Single let Prescale 100	A Singledet 70	60	1.5 ± 0.0	80.0	4 -	10300
ongle jet riescale 1000	W prudrener 20	00	0.0 ± 0.4	09.9	1 ÷-	

- **Muon :** 50 Hz >
- **e**γ : 30 Hz

۶

- **Jets/MET/H**_T : 30 Hz
 - **τ**: 7 Hz
- **b-jets :** 10 Hz
- Cross-channel: 20 Hz
- **Prescaled :** 15 Hz \geq

Safety factor 2 for HLT bandwidth :

- Uncertainty on heavy-flavor ≻ cross-sections
- Uncertainties in simulation \geq

pton triggers : Gateway for many ysics channels

riety of physics covered : J/ψ -> μμ

Trileptons -> t-tbar -> μ +jets

escaled triggers : accompany physics triggers

HLT : Efficiencies for benchmark channels

Muon HLT efficiency for benchmark channels

Signal	HLT Single Relaxed	HLT Double	HLT Single Isolated	(Level-1)*HLT
377.0	muon eff.(%)	muon eff.(%)	muon eff.(%)	acceptance (%)
$Z \rightarrow \mu \mu$	98.6	91.2	95.8	98.1
$W \to \mu \nu$	86.9	17	81.4	76.7

Electron HLT efficiency for benchmark channels

Signal process	Isolated single electron	Relaxed single electron	Isolated double electron	Relaxed double electron
HLT: $Z \rightarrow ee$	83.3	85.2	63.8	64.4
HLT: $W \rightarrow e\nu$	62.5	61.2	π.	0.70
L1*HLT: $Z \rightarrow ee$	80.0	82.6	62.6	63.2
L1*HLT: $W \rightarrow e\nu$	52.1	52.4	-	-

Higgs and photons

Signal process	Isolated	Relaxed	Isolated	Relaxed
	single	single	double	double
	photon	photon	photon	photon
HLT: $H \rightarrow \gamma \gamma (m_H = 120 \text{ GeV})$	80.5	76.8	75.8	75.7
L1*HLT: $H \rightarrow \gamma \gamma (m_H = 120 \text{ GeV})$	78.8	76.8	75.8	75.7

Higgs and taus

Table 5.2: Efficiencies and rates of the SingleTau HLT path.

	H [±] -	QCD	
	$M_{\rm H} = 200 {\rm GeV}/c^2$	$M_{\rm H} = 400 {\rm GeV}/c^2$	$\hat{p_T}$ 120-170
Level-2 ₽ _T cut	59%	81%	6%
Level-2 Jet Reconstruction			
and Ecal Isolation	81%	85%	53%
Level-2.5 SiStrip Isolation	67%	76%	27%
Level-3 SiStrip Isolation	70%	72%	18%
HLT	23%	38%	0.15%
L1 * HLT	16%	29%	(1942) (1942)

HLT : Tíming performance for L = 10³² cm⁻² s⁻¹ (2008 physics-run)

Time budget : Dictated by L1 output rate & Number of CPU nodes

 $150 \text{ kHz} / 2000 = <\text{Time}_{\text{machine}} = 40 \text{ ms}$

- Average processing time for different samples
- \sim Weight by σ and L1 efficiency
- > Compare weighted sum with time of L1-accepted MinBias events

Sample	L1 efficiency (%)	L1 eff. $\times \sigma$ (pb)	Average time (ms)
Minimum bias	0.19 ± 0.01	$(1.50 \pm 0.09) imes 10^8$	42.7
QCD $\hat{p_T} \in [0, 15]$ GeV/c	0.08 ± 0.01	$(4.36 \pm 0.49) \times 10^7$	31
QCD $\hat{p_T} \in [15, 20]$ GeV/c	2.08 ± 0.11	$(3.04 \pm 0.17) imes 10^7$	36
QCD $\hat{p}_{T} \in [20, 30]$ GeV/c	5.75 ± 0.18	$(3.64 \pm 0.11) \times 10^7$	40
QCD $\hat{p}_{T} \in [30, 50]$ GeV/c	21.70 ± 0.41	$(3.54 \pm 0.07) \times 10^7$	47
QCD $\hat{p}_{T} \in [50, 80]$ GeV/c	63.36 ± 0.84	$(1.37 \pm 0.02) \times 10^7$	53
QCD $p_{T} \in [80, 120]$ GeV/c	95.96 ± 1.23	$(2.96 \pm 0.04) imes 10^{6}$	73
QCD $\hat{p}_{T} \in [120, 170]$ GeV/c	99.87 ± 1.18	$(4.93 \pm 0.06) imes 10^5$	143
QCD $p_{\rm T} \in [170, 230]$ GeV/c	100.00 ± 0.00	$(1.01 \pm 0.00) \times 10^5$	264
QCD $\hat{p}_{T} \in [230, 300]$ GeV/c	100.00 ± 0.00	$(2.45 \pm 0.00) imes 10^4$	385
$pp \rightarrow \mu X$	42.96 ± 0.37	$(1.03 \pm 0.01) \times 10^7$	74
W ightarrow e u	93.18 ± 0.59	$(7.36 \pm 0.05) \times 10^3$	280
$W ightarrow \mu u$	84.67 ± 0.80	$(8.29 \pm 0.08) \times 10^3$	123
$Z \rightarrow ee$	99.54 ± 0.67	$(8.16 \pm 0.05) \times 10^2$	739
$Z ightarrow \mu \mu$	98.99 ± 1.20	$(7.82 \pm 0.09) imes 10^2$	184
Weighted sum of QCD	, W, Z and $pp \rightarrow \mu X$	Y contributions	42.9 ± 5.6

Table 8.4: Average processing wall-clock times for running the High-Level Trigger Menu at $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ on Level-1-accepted events at an idle Core 2 5160 Xeon 3.0 GHz machine.

Slow events : Will autosave events if T > 600ms : saves time

Alternative

- scenarios :
- Give more bandwidth to τ, i.e more tracking : L1 single-tau : 80->60 GeV; L1 double-tau : 40->35 GeV. <T> : 43ms -> 45.8ms (MinBias)
- Cope with 2.10³³ cm⁻² s⁻¹: Raise L1 thresholds => More sensitive to higher QCD bins : Processing time increases (busy events)
 - > Naïve extrapolation : <T> \sim 56ms

HLT: Timing performance for $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ (2008 physics-run)

Keys for present performance :

- > **Profiling studies** revealed slowest pieces of code
- **Use zero-suppressed data :** Reduces data-unpacking time
- **Regional reconstruction :** Muon, e/γ
- > Data-unpacking :
 - Regional for ECAL
 - Fast(er) for siStrip
- Machine :
 - Core-2
 - Data cache (memory allocation), sometimes more important than clock speed
- Optimizing trigger logic (τ-, b-triggers) : Filter more before event enters time-consuming steps
- Equal bandwidth distribution for leptons, jets, E_{T}^{miss}

So far so good... It's not where we want to stay

Coming improvements :

- **Regional reconstruction :** Everywhere in HLT
- **Regional unpacking :** For the tracker
- Library for track-fitting (clhep -> S-Matrix) : avoid too much data-copying in new versions

Conclusion / Perspectives

- Choice of physics explored : Already made at Level 1 Trigger
 - > Only with calorimeter and muon system
- **Full object reconstruction at High Level Trigger**, with higher resolution
- Most extensive study of HLT algorithms, efficiencies, rates, timing :
 - > Performance consistent with CMS physics program and resources

What if... > Rates go high :

- > Underestimated σ : Safety factor of 3/2 for L1/HLT
- > Busy event (impacts the timing) : Shielded with L1 seeding & Regionality
- > ... Timing improvements in pipeline

When/How	٨	Varying conditions in 2008 : $L : 10^{21} \rightarrow 10^{32} \text{ cm}^{-2} \text{ s}^{-1} / \Delta t : 75 \text{ ns} \rightarrow 25 \text{ ns}$
do we start :	۶	$L < 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$: Understand Trigger & Detector in real LHC conditions

- Minimum Bias
- Relax algorithm cuts
- Calibration/alignment triggers
 - \succ ECAL : π^0
 - > Jet Energy Scale : γ + jets
 - > Tracks : J/ ψ -> $\mu\mu$, isolated π^{\pm}
- > Trigger redundancies -> Trigger efficiencies with Data
- $L \ge 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$: Rediscover SM and... beyond

Backup slides

Jet finder : "Square" finder

Sliding window

- $E_{T}(central \{4x4\} region) > others$
 - (η , ϕ) : from {12x12} towers
 - $E_{T}(\{12x12\} \text{ towers}) > \text{cut}$
- τ-jet : Isolated- and narrow-deposit Jet
- Single-, double-, triple- & quad-thresholds
- Possible to cut on N(jets)
- All cuts programmable
- > Also $H_T = \Sigma E_T$ (jets), ΣE_T , E_T^{miss} triggers

- **Resistive Place Chambers :** Dedicated trigger detector : Excellent time resolution
- Drift Tubes (barrel) & Cathod Strip ۶ **Chambers** (endcap) : Precise position resolution

Bunches	β*	l _b	Luminosity	Event rate
1 x 1	18	10 ¹⁰	10 ²⁷	Low
43 x 43	18	3 x 10 ¹⁰	3.8 x 10 ²⁹	0.05
43 x 43	4	3 x 10 ¹⁰	1.7 x 10 ³⁰	0.21
43 x 43	2	4 x 10 ¹⁰	6.1 x 10 ³⁰	0.76
156 x 156	4	4 x 10 ¹⁰	1.1 x 10 ³¹	0.38
156 x 156	4	9 x 10 ¹⁰	5.6 x10 ³¹	1.9
156 x 156	2	9 x 10 ¹⁰	1.1 x10 ³²	3.9

Mike Lamont