

ATLAS Computing System Commissioning: Real-Time Data Processing and Distribution Tests

Armin NAIRZ (CERN)

on behalf of

Luc GOOSSENS (CERN), Armin NAIRZ (CERN) ATLAS Tier-0 Team

Miguel BRANCO (CERN), David CAMERON (Oslo), Pedro SALGADO (UTA, CERN) ATLAS Distributed Data Management

Dario BARBERIS (Genoa, CERN), Kors BOS (NIKHEF), Gilbert POULARD (CERN) ATLAS Computing Management

EPS/HEP2007 Conference, Manchester

- Introduction
 - ATLAS Offline Data Flow
 - ATLAS Tier Structure and Tier Functions
 - Tier-0 Scale
- Tier-0 Internal Tests
- Tier-0 \rightarrow Tier-1 Export Tests
- The Full Dress Rehearsal (FDR)
 - Scope
 - Preparatory Exercises (Stream Test)
- Plans for 2007/2008
- Summary and Conclusions

ATLAS Offline Data Flow

- Data flow described as anticipated in the ATLAS Computing Model
- High-level trigger ("Event Filter") processors send outputs to 5-10 Sub-Farm Output managers (SFOs)
 - Trigger rate: 200 Hz
- SFOs assemble files and transfer them to the Tier-O centre
 - File closure at "luminosity block" (~1min) and run boundaries
 - Data streaming: 3-4 calibration streams; "Express Stream"; 5-6 physics streams
- Tier-0 processes the data
 - Calibration and alignment processing
 - Prompt Express Stream processing, using "best possible" calibration
 - First-pass reconstruction of physics streams
 - Latency up to 24h, waiting until calib/align processing for the run has finished
 - Produces Event Summary Data (ESD), Analysis Object Data (AOD), TAGs
 - Uploading of TAGs to a central database
 - Variety of potential additional tasks/services
 - File merging, data-quality monitoring, meta-data (file, dataset) uploading, ...

3

- Tier-O archives RAW and derived data (ESD, AOD, TAG) on tape
- Tier-O exports RAW,ESD,AOD,TAG data to the 10 Tier-1 centres, via the ATLAS Distributed Data Management (DDM) system
 - One copy of RAW
 - Two copies of ESD (plus one full copy to BNL)
 - 10 copies of AOD and TAG
- Tier-1 centres archive the data and distribute them to their associated Tier-2 centres
 - At least one full additional, shared AOD copy in each "Tier-1 cloud"
- Tier-1 centres are responsible for reprocessing of the RAW data
 - Once better calibration and alignment becomes available
- User analysis is done on the Tier-2 centres
 - User jobs are directed to the data at the Tier-2s, to avoid additional, "chaotic" data replication

Tier-0 Scale^(*)

- Introduction
 - ATLAS Dataflow
 - ATLAS Tier Organisation and Functions
 - Tier-0 Scale
- Tier-0 Internal Tests
- Tier-0 \rightarrow Tier-1 Export Tests
- The Full Dress Rehearsal (FDR)
 - Scope
 - Preparatory Exercises (Stream Test)
- Plans for 2007/2008
- Summary and Conclusions

Tier-O Internal Tests

- Tier-0 test activities started in 2005
 - Test series since then:
 - Nov/Dec 2005
 - Jan 2006; Jun 2006; Sep/Oct 2006
 - Feb 2007; since May 2007 (in continuous "test mode")
 - Participation in ATLAS "Milestone-3" (M3) cosmics data taking run (Jun 2007)
- Tier-0 internal processing strategy
 - Focus on data transfer, realistic workflow
 - Run (semi-)dummy executables, use (semi-)dummy data
 - Due to limited CPU resources
 - Replace with more realistic executables once s/w and more resources become available
- Usage of dedicated CERN h/w resources
 - CASTOR: dedicated pool infrastructure
 - Currently 54 disk servers (~300 TB disk buffer), 16 tape drives
 - LSF (CERN batch farm): dedicated cluster, O(100-200) nodes
- Tier-0 internal "nominal" transfer rates were reached already in Jan 06

Tier-O Internal Tests

- Sep/Oct 2006 test: Tier-0 internal achievements (selection)
 - Detailed workflow for physics reconstruction and calib/align processing in place
 - Extensive monitoring (more than 90 variables)
 - Live monitoring page: <u>http://atlas.web.cern.ch/Atlas/tierO/monitoring/</u>
 - One week of stable running at 140% "nominal" rate (Oct 9-15)
 - 1.5 PB of data moved in total, 400k jobs executed in total, ...
- Feb 2007 test: "CASTOR crisis"
 - Common stager for whole of ATLAS overloaded, led to complete break-down
 - CASTOR/IT Task Force was put in place, to address problems quickly
 - Separate Tier-0 stager was set up in May 2007
 - Test-bed for newly developed CASTOR software
 - Tier-O tests dedicated to providing fast feed-back to CASTOR developers
 - After successful test period, reverted to common ATLAS stager (Jun 2007)
- Since then the Tier-O has been running in continuous "test mode"
 - Providing a "base load" on the stager, sustained over periods of weeks
 - CASTOR performance excellent (better than ever before !)

Tier-O Monitoring (Examples)

- Aggregated rates for selected CASTOR transfers
 - Week of June 18-25, 2007
 - RAW (reading and writing), ESD (writing), merged AOD (writing)

- Introduction
 - ATLAS Dataflow
 - ATLAS Tier Organisation and Functions
 - Tier-0 Scale
- Tier-0 Internal Tests
- Tier-0 \rightarrow Tier-1 Export Tests
- The Full Dress Rehearsal (FDR)
 - Scope
 - Preparatory Exercises (Stream Test)
- Plans for 2007/2008
- Summary and Conclusions

- ATLAS Distributed Data Management (DDM) system is being developed at CERN
 - Underlying software: DQ2 (DQ = "Don Quijote")
 - Central DQ2 catalogues at CERN
 - External dependencies:
 - File transfer software: FTS, SRM (CERN)
 - Catalogues: LFC (CERN/LCG), LRC (US ATLAS), Globus RLS (Nordic Data Grid Facility)
- Export exercises are usually coupled to Tier-O test series and activities
- Achievements during Jun 2006 Tier-0 test (selection)
 - Included all Tier-1 sites in the exercise from first day (except NDGF)
 - Included ~15 Tier-2 sites on LCG by the end of the second week
 - Maximum export rate ~700 MB/s, sustained over several hours
- Sep/Oct 2006 test
 - Problem: CMS data export running in parallel
 - Maximum achievable export rate only ~400 MB/s

Tier-0 \rightarrow Tier-1 Export Tests

- DDM monitoring became responsibility of CERN/ARDA team
 - ARDA "dashboard": <u>http://dashb-atlas-data.cern.ch/dashboard/request.py/site</u>
 - Detailed, powerful monitoring tool
- During "CASTOR crisis" a systematic DDM debugging effort took place
 - Trying to understand, under controlled conditions:
 - Every single file transfer error
 - Complete data transfer flow across all layers (from DQ2 to the file systems)
 - Transfer throughput and its limitations
 - Led to elimination of some persistent problems
- CASTOR upgrades also substantially improved the Tier- $0 \rightarrow$ Tier-1 export
- Recent achievements (selection):
 - Peak export rates of ~900 MB/s (but only for very short periods of time)
 - Daily peak export of ~600 MB/s
 - Sufficient to keep up with the nominal daily data rate (assuming 50k active seconds/day)
 - Stabilised, improved operation on many of the Tier-1s

Export Monitoring (Examples)

Export rates in MB/s on Jun 7, from 11:00 to 23:00

Export to BNL only, during 18 hours:

- From Jun 4, 17:00, to Jun 5, 15:00
- Stable running at 278 MB/s on average, with 98% efficiency

Daily export rates in MB/s, between Jun 4 and Jun 11

EPS/HEP2007 Conference, Manchester

- Introduction
 - ATLAS Dataflow
 - ATLAS Tier Organisation and Functions
 - Tier-0 Scale
- Tier-0 Internal Tests
- Tier-0 \rightarrow Tier-1 Export Tests
- The Full Dress Rehearsal (FDR)
 - Scope
 - Preparatory Exercises (Stream Test)
- Plans for 2007/2008
- Summary and Conclusions

The "Full Dress Rehearsal" (FDR)

- Planned series of continuity tests of the complete offline chain SFOs → Tier-0 → Tier-1s → Tier-2s
 - "Mock data" fed into online output farm (SFO)
 - "Bytestream" input generated from simulated data, realistic file sizes
 - Realistic physics mix, realistic Trigger Tables
 - Organisation into O(6) trigger-based physics streams
 - Conditions database and in-file metadata access
 - Data Quality Monitoring and preprocessing steps (similar to Express Stream and calibration stream processing)
 - Real-time reconstruction at the Tier-O, producing ESD, AOD, TAG, ...
 - Export of RAW and reconstructed data to Tier-1s
 - Export of reconstructed data to Tier-2s
- Reprocessing test for Tier-1s
 - Reconstruction reprocessing from RAW, alternatively remaking AOD from ESD
- Test of Analysis Model
 - User analysis on Tier-2s

FDR Preparation: The Stream Test

- Done during first half of 2007
- Based on 18 pb⁻¹-equivalent of simulated data
 - Simplified 10³³ trigger menu, including prescales
 - Data organised into trigger-based streams:
 - "Inclusive streaming" (5 streams)
 - » Events are written into any stream whose trigger selection they pass
 - "Exclusive streaming" (6 streams)
 - » Events are written only once
 - » Events passing more than one selection are written into dedicated "Overlap Stream"
 - Streams: jets, electrons, photons, muons, etmiss, (Overlap)
 - Luminosity variations implemented, some meta-data (e.g., "bad runs") added
 - Reconstruction run on the data
 - Using imperfect calibrations
 - Produced (among others) AOD, TAG
 - Populated TAG database
- Many unforeseen difficulties encountered
 - Data preparation and distribution; software readiness; trigger simulation; ...

FDR Preparation: The Stream Test

- User analysis of Stream Test data has started
 - Results will be used to decide on final streaming model
 - Example plot from a recent meeting (Jul 5) <u>http://indico.cern.ch/conferenceDisplay.py?confId=17090</u>

 Z^0 mass, reconstructed from $Z^0 \rightarrow e^+e^$ events, selected from the Stream Test inclusive-electron sample

MC | 'data'

(normalized to **measured** cross section)

(LBL Group: A. Holloway et al.)

EPS/HEP2007 Conference, Manchester

- Introduction
 - ATLAS Dataflow
 - ATLAS Tier Organisation and Functions
 - Tier-0 Scale
- Tier-0 Internal Tests
- Tier-0 \rightarrow Tier-1 Export Tests
- The Full Dress Rehearsal (FDR)
 - Scope
 - Preparatory Exercises (Stream Test)
- Plans for 2007/2008
- Summary and Conclusions

Plans for 2007/2008

- Continue autonomous Tier-0 internal and Tier-0 \rightarrow Tier-1 export testing
 - Concentrating on throughput, improved functionality, stability of operation, achieving of required export rates
 - For Tier-O internal processing: adding more realism w.r.t. used data and executables (available h/w resources permitting)
- Tier-0 will participate in FDR and cosmics data taking runs
 - E.g., "M4" cosmics run (Aug/Sep 2007)
 - Including data export to Tier-1s
 - Possibly first attempt of reprocessing at selected Tier-1s
 - During those periods the autonomous Tier-O testing will be suspended
- FDR plans
 - First round in Autumn 2007
 - Based on one fill (10h) of emulated data
 - Second (final) round in Spring 2008
 - Using more recent simulation version
 - More statistics, richer physics mix, more complicated trigger menus

- Introduction
 - ATLAS Dataflow
 - ATLAS Tier Organisation and Functions
 - Tier-0 Scale
- Tier-0 Internal Tests
- Tier-0 \rightarrow Tier-1 Export Tests
- The Full Dress Rehearsal (FDR)
 - Scope
 - Preparatory Exercises (Stream Test)
- Plans for 2007/2008
- Summary and Conclusions

- Significant progress has been made in the last two years
 - The test programme carried out so far has turned out very fruitful
 - The parts of the Computing System covered in the tests so far are already in a very advanced state
 - In general, basic functionality seems to be in place
- Target for this year is to exercise the complete system at nominal rates (corresponding to 200 Hz data-taking rate), and for next year to reach even 1.5-2 times higher rates
 - To be able to cope with possible backlogs
- These are ambitious targets ...
 - ... and there is still a lot of work ahead of us
 - But we are confident that we are "almost there"
 - Don't expect fundamental show-stoppers any more

