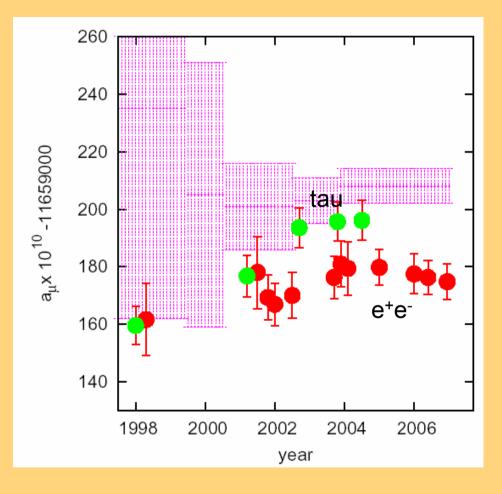
EW precision tests before the LHC

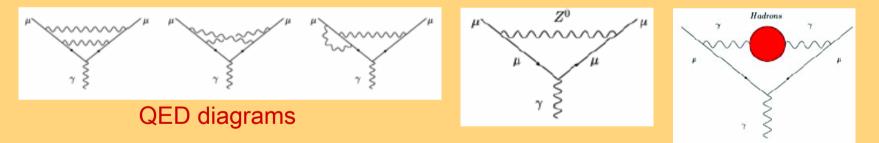
Paolo Gambino Università di Torino INFN Torino



Precision tests in the last few years

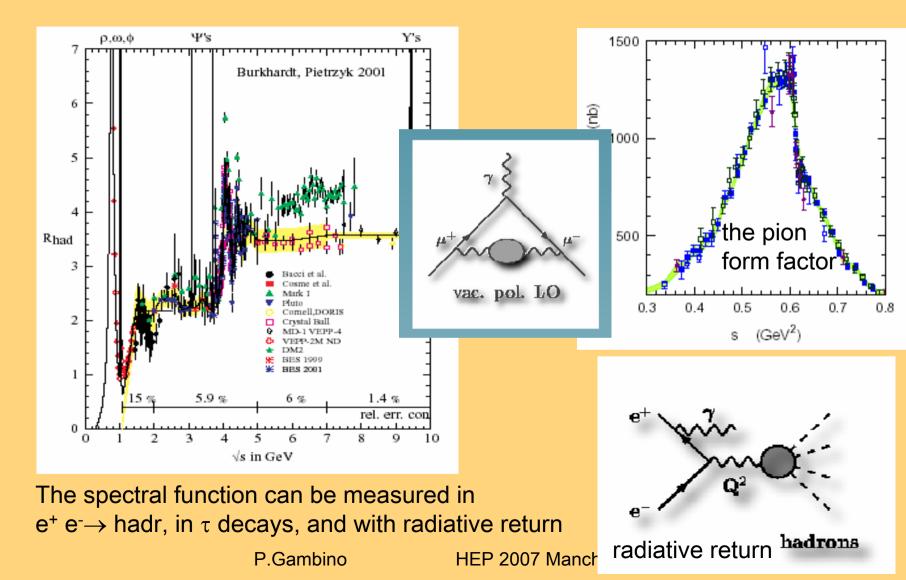
- ✓ $(g-2)_{\mu}$ remains a puzzle
- ✓ Great improvement in M_t and smaller one in M_w at the Tevatron
- ✓ Small improvements in $\Delta \alpha_h$ determination
- ✓ Most LEP results finalized, final E158 result.
- Some possible anomalies faded away (weak universality, NuTeV...)
- ongoing theoretical effort to improve accuracy: important for the future, especially for ILC

Overall the SM performs well, but some cracks in its building have deepened during the last few years.

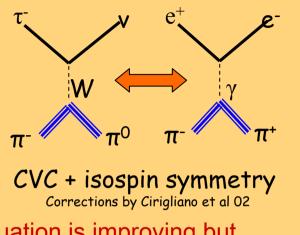

The ups and downs of $(g-2)_{\mu}$

Can we test the SM with $(g-2)_{\mu}$?

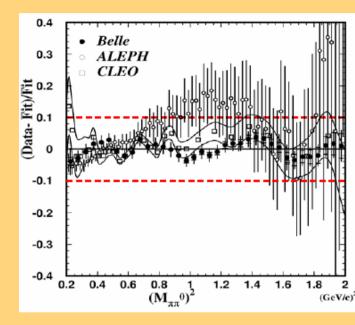
 $a_{\mu}^{exp} = 116\ 592\ 080(60)\ x10^{-11}$ $a_{\mu}^{SM} = [116\ 584\ 706(3)_{QED} + 154(2)_{W,Z,H} + 6831(73)]x10^{-11}$

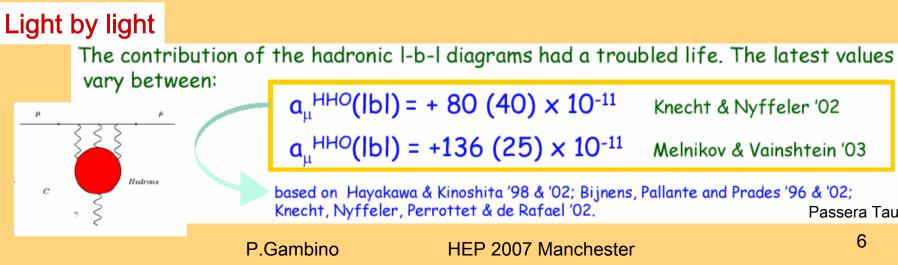

~3σ discrepancy: **New Physics** (Supersymmetry?) or due to **uncalculable strong interaction effects**?

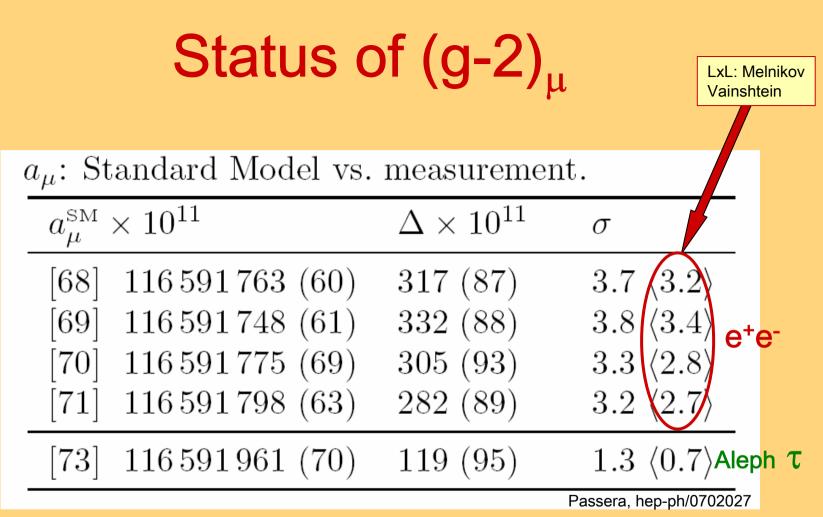
Non-QED effects are suppressed by m_{μ}^2/Λ^2 but starting at 2loops Λ can also be the scale of strong interactions $\Lambda \sim M_{\rho}^2 \sim 700 \text{MeV}$!


Excellent place for new physics, no M_H sensitivity: loop effects $\sim m_{\mu}^2/\Lambda^2$ but needs *chiral* enhancement: SUSY natural candidate at moderate/large tan β

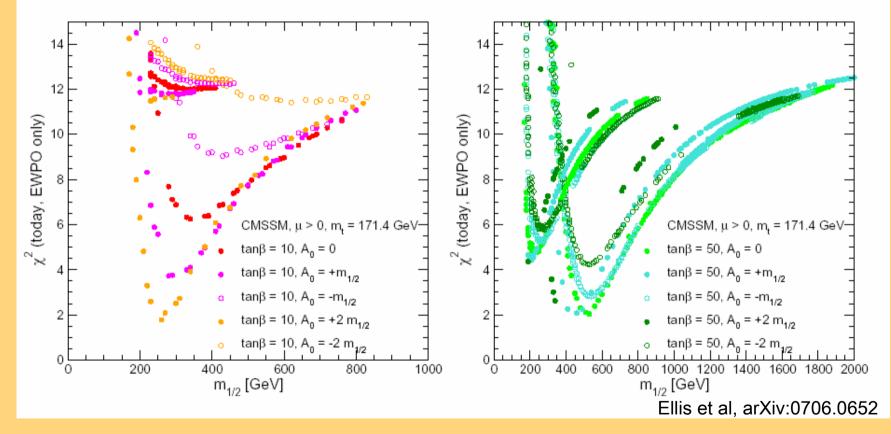
The spectral function




The main open problems


Spectral function from tau decays implies extra theory input

Experimental situation is improving but tau data **must be understood** (experimental or theoretical problem?)



At present still problematic. Exp problems will be solved in the near future. LxL eventual bottleneck, but has the *wrong* sign and theory evolves. The proposed new experiments at Brookhaven and JLab should be funded

P.Gambino

$(g-2)_{\mu}$ in the MSSM

EW fit in the CMSSM: the existence of the dip (preference for light superpartners) in χ^2 rests almost exclusively on this piece of data

Low energy tests of NC couplings

 $\sin^2 \theta_{W}^{eff}(Q)$ 0.242 E158 NuTeV Low energy Moller 0.24 Needs to reanalyze scattering measurements data of $\sin^2\theta_w$ can 0.238 be presented as tests of its running 0.236 Atomic Parity Violation Czarnecki & Marciano NuTeV uncertainty 0.234 **Qw(Cs)** (2000)from PDFs, implementation of NLO 0.232 and EW corrections **PDG2004** 10⁻² 10^{3} 10⁻¹ 10^{2} 10 Q (GeV)

Indirect determination of M_H

or
$$\alpha(M_z), G_{\mu}, M_w \rightarrow f(M_t, M_H)$$

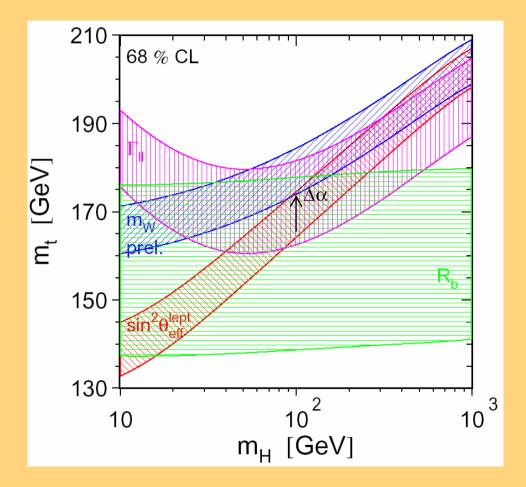
 $\alpha(M_z), G_{\mu}, \sin^2\theta_{eff} \rightarrow g(M_t, M_H)$

Since M_t is now known to 1% $\rightarrow M_H$

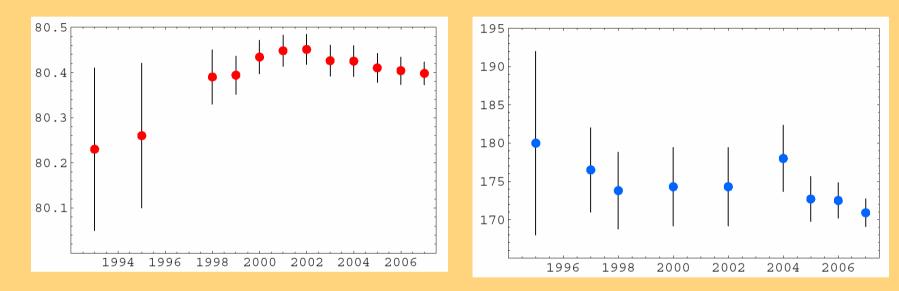
$$G_{\mu} = \frac{\pi \alpha(M_Z)}{\sqrt{2}M_W^2(1-\frac{M_W^2}{M_Z^2})} \underbrace{\frac{1}{(1-\Delta r)}}_{\text{EW loops}}$$

 Δr is an observable quadratic (logarithmic) function of M_t (M_H), known with theory precision close to 10⁻⁴. Analogous relations hold for sin² θ_{eff} etc.

Recent calculations: complete 2loop EW, leading 3 and 4 loop effects


Awramik, Czakon, Freitas, Feisst, Uccirati, Sturm, Weiglein, Boughezal, Van der Bij, Tausk, Chetyrkin, Kuehn, Meier, Hollik...

P.Gambino

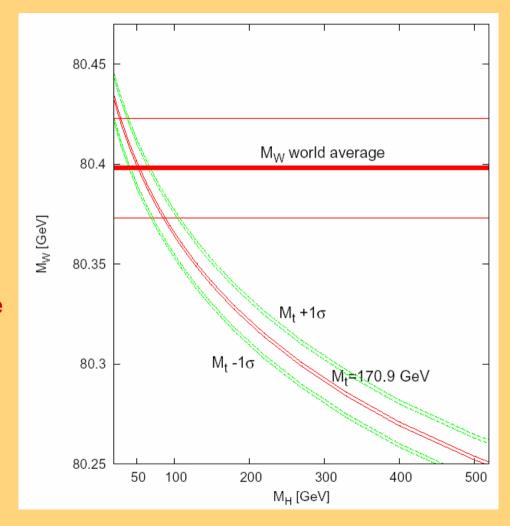

M_{top}-M_H correlations

Strong correlation because they enter the same loops *Positive* correlation: higher $M_{H} \rightarrow$ higher M_{H}

The constraining power of M_W and $sin^2\theta_{eff}$ is similar at current precision

M_W and M_{top} history

The low value of M_{top} implies a preference for lower M_{H}


Which mass is being measured? It's time to go to NLO and adopt a well-defined mass that induces small radiative corrections, eg MS $m_t(m_t)$

Pointing to a light Higgs

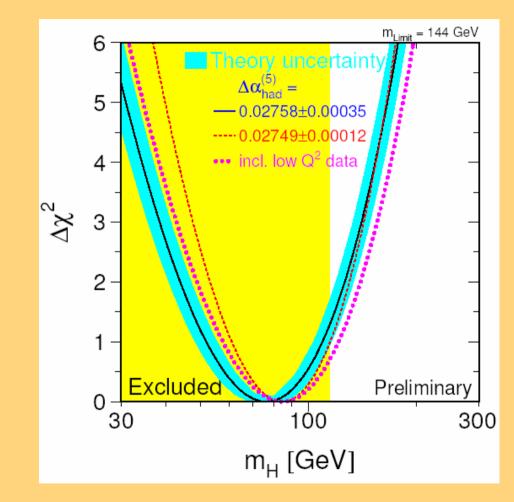
M_W likes a very light Higgs Almost too light...

A heavy Higgs can be accomodated by many types of New Physics, ex: 4th generation. It needs an accidental cancellation we cannot exclude

NB further improvements on m_t will have a more limited effect on M_H constraints

P.Gambino

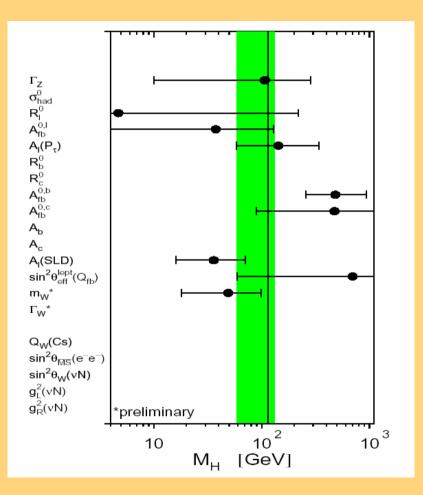
The "global" EWWG fit


^{fit} M_H=76 GeV, M_H<144 GeV at 95%CL χ²/dof=18.2/13 15.1% prob

Strong preference for light Higgs, below 150 GeV, even including info from direct searches

OVERALL, SM fares well (does not include NuTeV, APV, g-2)

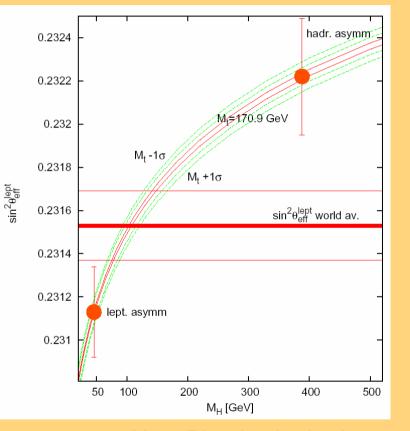
 $O^{meas} - O^{fit} | / \sigma^{meas}$ Measurement Fit $\Delta \alpha_{\text{had}}^{(5)}(\text{m}_{z})$ 0.02758 ± 0.00035 0.02768 m₇ [GeV] 91.1875 ± 0.0021 91.1875 Γ₇ [GeV] 2.4952 ± 0.0023 2.4957 σ_{had}^0 [nb] 41.540 ± 0.037 41.477 20.767 ± 0.025 20.744 R $A_{fb}^{0,l}$ 0.01714 ± 0.00095 0.01645 $A_{I}(P_{\tau})$ 0.1465 ± 0.0032 0.1481 R_b 0.21629 ± 0.00066 0.21586 R_{c} 0.1721 ± 0.0030 0.1722 $A_{fb}^{0,b}$ 0.1038 0.0992 ± 0.0016 A^{0,c}_{fb} 0.0707 ± 0.0035 0.0742 0.923 ± 0.020 0.935 A_b 0.670 ± 0.027 0.668 A_c 0.1513 ± 0.0021 $A_{I}(SLD)$ 0.1481 $\sin^2 \theta_{\text{off}}^{\text{lept}}(Q_{\text{fb}})$ 0.2324 ± 0.0012 0.2314 m_w [GeV] 80.398 ± 0.025 80.374 Γ_w [GeV] 2.091 2.140 ± 0.060 m, [GeV] 170.9 ± 1.8 171.3 2 0 1


The blue band

LEP-SLD EW Working Group http://lepewwg.web.cern.ch/LEPEWWG

P.Gambino

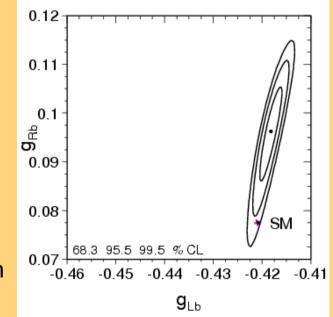
The M_H fit



EWWG fits an arbitrary set no $(g-2)_{\mu}$, no universality, no $b \rightarrow s\gamma$

Only a subset of observables is sensitive to $\rm M_{\rm H}$

A fit only to the observables sensitive to M_H has the same central value and much LOWER probability of about 2%


New physics in the b couplings?

New Physics in the b couplings could explain it, but it should be tree level and such that $|\delta g_R^{b}| >> |\delta g_L^{b}|$ Problematic and ad-hoc Choudhury et al, He-Valencia

P.Gambino

Root of the problem: old $\sim 3\sigma$ discrepancy between LR asymmetry of SLD and FB b asymmetry of LEP: in SM they measure the same quantity, sin² θ ^{eff} (A_b is practically fixed in SM)

The Chanowitz argument

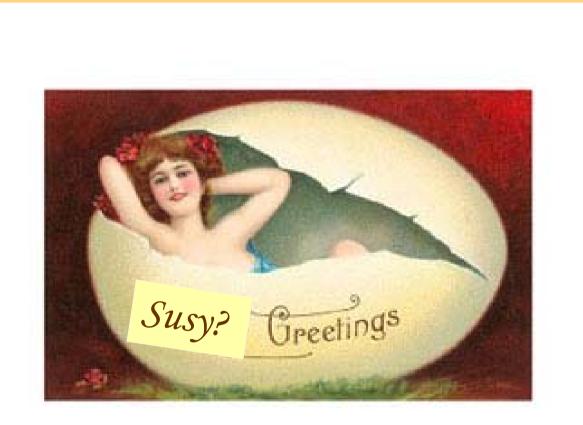
2 possibilities, both involving new physics:

a) A_{FB}(b) points to new physics

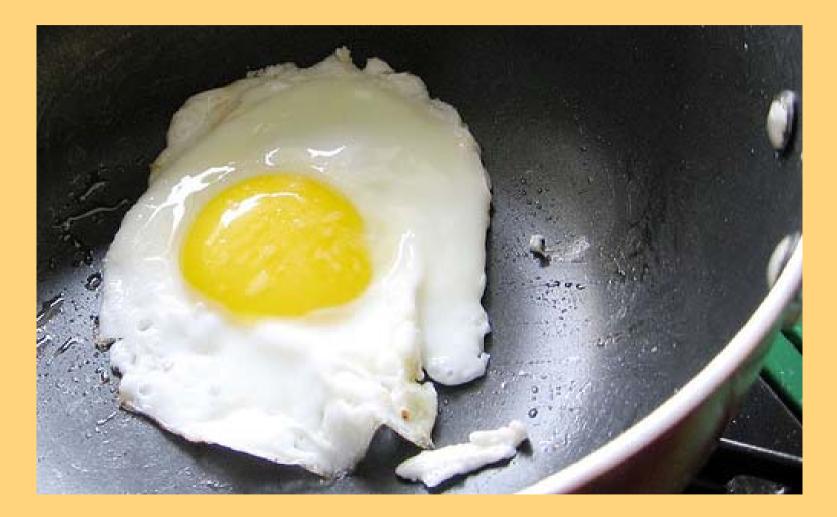
b) it's a fluctuation or is due to unknown systematics

without $A_{FB}(b)$, the M_{H} fit is very good, but in conflict with direct lower bound M_{H} >114.4 GeV with Hagiwara et al for Δa_{h} M_{H} =48 GeV, M_{H} <97 GeV at 95%CL M_{H} =48 GeV, M_{H} <87 GeV at 95%CL Even worse if $\alpha(M_{z})$ from tau is used

If true, not difficult to find NP that mimics a light Higgs. Non-trivially, SUSY can do that with light sleptons, tanβ>4 Altarelli et al Statistically not very strong (<3 σ) but quite intriguing

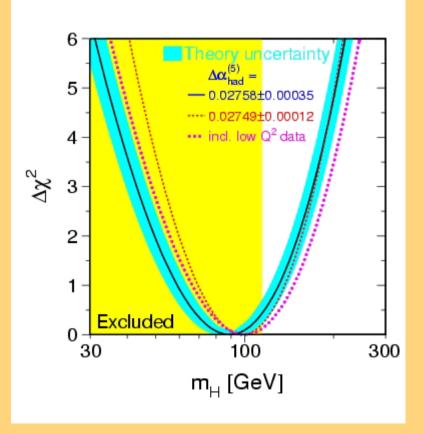

Precision tests and LHC

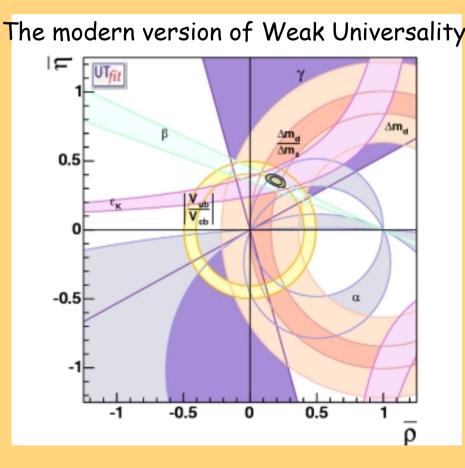
- Higgs discovery or disproval remains the first task of LHC. We have growing evidence that the SM Higgs must be <u>very close to</u> <u>the LEP exclusion bound</u>, if it exists. A heavy H can describe data only with new physics (and a *conspiracy*)
- * Whatever LHC observes will need to be *understood*: is this the SM Higgs or not? are these heavy charged scalars squarks o KK excitations? The constraints from EWPT enhance significantly the analyzing power for LHC results.
- LHC will also have its own EW program, including the study of Higgs properties (mass, width, couplings), W mass (goal 10 MeV) and width, top mass (probably th limited) and properties, sin²θ_{eff}^{lept} from FB asymmetries, triple gauge couplings.
- * Muon g-2 and $A_{FB}(b)$ are puzzling (3 σ !) anomalies. Had $A_{FB}(b)$ not been measured, we would face a similar puzzle, with the conflict of direct and indirect M_H determinations.


Cracks in the egg?

Possibility n.1

Possibility n.2




We won't need to wait long for an answer

Overview of precision tests

<u>EWSB</u>: O(0.1%), $\Lambda > 5$ TeV (roughly)

<u>Flavor</u>: O(2-10%), $\Lambda > 2$ TeV (roughly)

