ATLAS Inner Detector Alignment

🕷 Tobias Göttfert – MPI für Physik

on behalf of the ATLAS Inner Detector alignment group EPS HEP conference 2007 Manchester, 20.7.07

The ATLAS Inner Detector

- Three subdetectors in barrel and two endcaps:
 - o Pixel
 - silicon modules with time-over-threshold readout
 - pixel size 50 · 400 μm, resolution ~14 · ~115 μm
 - SCT (SemiConductor Tracker)
 - double layer silicon strip modules with binary readout
 - pitch 80 μm, resolution ~23 μm
 - TRT (Transition Radiation Tracker)
 - drift straw tubes with gold wire
 - 4 mm diameter, resolution ~170 μm

The ATLAS Inner Detector

 Inner Detector has 1744 Pixel modules, 4088 SCT modules and 544 TRT modules (even more individual wafers and straw tubes)

- Modules are overlapping within a barrel layer / endcap disk
- SCT barrel has a hardware-based alignment system (FSI)

The Alignment Challenge

Parameters to determine:

	Barrel			Endcap			
	Pix	SCT	TRT	Pix	SCT	TRT	
layers	3	4	3	2 · 3	2 · 9	2 · 14	
modules	1456	2112	96	2 · 144	2 · 988	2 · 14	
total	$O(6k) \cdot 6 \text{ DoF} = O(36k) \text{ DoF}$						

• Mounting and survey precision: $O(100 \ \mu m)$, depending on subdetector

3 translations & 3 rotations per alignable structure

- Requirements:
 - track parameter resolution not to be worsened by more than 20%
 - b-tagging efficiency drops by 10% with a misalignment of O(10 $\mu m)$
- $\circ~$ Required accuracy: O(10 $\mu m)$ and less, depending on subdetector

Alignment algorithms

für Physik

Alignment algorithms were used for:

Cosmics data

Simulated data (CSC)

CombinedTestBeam

- o 2004 combined pion/electron run at the CERN SPS H8 beamline
- o 2-180 GeV with and without B-field
- Recent results:

für Physik

Cosmics alignment

Ο

Alignment of the CSC

CSC (Computing System Commissioning) Challenge:

- Alignment task is to align an educated guess of misaligned "as-built" detector geometry
- CSC misalignment scales:

	Level 1	Level 2	Level 3
	(barrel, endcap)	(layers, discs)	(modules)
Misalignment	O(1 mm)	O(100 μm)	O(100 μm)

- \circ "Weak modes" leave χ^2 for tracks from the interaction point unchanged; can be cured by
 - additional track samples (cosmics, beam halo...)
 - additional constraints (vertex, mass constraint...)

CSC alignment – physics parameters

Correcting L1 resolves improper track impact parameter reconstruction:

für Physik

Max-Planck-Institut

Tobias Göttfert - EPS HEP

Correcting L2 improves

momentum scale:

Calibration Stream

- ATLAS computing model requests that alignment constants are produced within 24h after data taking
- Select tracks from samples of different topology for
 - Alignment
 - TRT R-t calibration
- Estimation: about 1000 hits per alignable structure are needed to fulfill accuracy requirements
 - For Level1 and Level2, this is quick
 - Level3 is challenging
- Since largest time fraction is needed for reconstruction, select good alignment tracks in the EventFilter and put into dedicated CalibrationStream

Conclusions

- Track-based alignment algorithms were developed within the ATLAS software framework
- They were successfully applied on
 - Testbeam data
 - Cosmics data
 - Simulated full ATLAS data (CSC) and will be applied on the data currently taken during pit commissioning
- Computing model requires that alignment constants are produced within 24 hours

<u>Acknowledgments:</u>

Many thanks to the whole ATLAS ID alignment group!

Many thanks to the whole ATLAS ID alignment group!

Backup Backnb

ATLAS at the LHC

- General purpose experiment for the LHC
- Physics goals:
 - Search for the Higgs
 - Supersymmetry searches
 - Top quark measurements

- Tracking system (ID) in 2T magnetic field
 - efficient track reconstruction
 - precise momentum measurement
 - precise interaction point determination
 - b-tagging

Robust alignment

F. Heinemann

The Global χ^2 Approach

A. Morley

Method consists of minimizing a giant χ^2 resulting from a simultaneous fit of all particle trajectories and alignment parameters:

$$\chi^2 = \sum_{tracks} r^T V^{-1} r$$

$$r(\pi, a, m)$$

- r = residuals
- = covariance matrix
- = track parameters
- = alignment parameters
- m = measurement

Use the linear expansion (assume all second order derivatives negligible).

$${d\chi^2\over d\pi}=0
ightarrow$$

$$\pi = \pi_0 + \delta \pi = \pi_0 - \left(\frac{\partial e^T}{\partial \pi_0} V^{-1} \frac{\partial e}{\partial \pi_0}\right)^{-1} \frac{\partial e^T}{\partial \pi_0} V^{-1} r(\pi_0, a)$$

Key relation!

Max

$$\left(\sum_{tracks} \frac{dr^T}{da_0} V^{-1} \frac{dr}{da_0}\right) \delta a + \sum_{tracks} \frac{dr^T}{da_0} V^{-1} r(\pi_0, a_0) = 0$$

dr	 ∂r	1	∂r	$d\pi$
\overline{da}	 $\overline{\partial a}$	+	$\overline{\partial \pi}$	\overline{da}

Alignment Parameters are given by:

$$\delta a = -\underbrace{\left(\sum_{tracks} \frac{\partial r^{T}}{\partial a_{0}} W \frac{\partial r}{\partial a_{0}}\right)^{-1} \underbrace{\sum_{tracks} \frac{\partial r^{T}}{\partial a_{0}} Wr(\pi_{0}, a_{0})}_{\mathcal{V}}}_{\mathcal{V}}$$
Where
$$W \equiv V^{-1} \hat{W} \equiv V^{-1} - V^{-1} E(E^{T}V^{-1}E)^{-1}E^{T}V^{-1}$$

$$E = \frac{dr}{d\pi_{0}}$$
Similar approach to Millipede at CMS

FSI

S. Gibson

- Frequency Scanning Interferometry for monitoring SCT detector distortions on short timescales
- Forms a geodetic grid in the SCT barrel
- \circ 842 grid line length measurements simultaneously to a precision of <1 μ m

Survey

- $\circ\,$ additional χ^2 -term places constraints on module positions within a structure
- o orthogonal to track information

(Survey alignment) Test Reference modules	(Survey alignment) Reference modules			module-to-module survey precision	
		Pixel sector	Pixel stave	SCT disk	SCT stave
	$\delta \mathbf{X}$	4.6 μ	50 µ	32 µ	150 μ
tracks	δ y	4.7 μ	20 µ	41 μ	150 μ
survey		12.7 μ	50 µ	50 µ	150 μ
		0.3 mrad	1.7 mrad	1.0 mrad	2.5 mrad
		0.7 mrad	5.0 mrad	1.0 mrad	5.0 mrad
	$\delta \phi_{\mathbf{z}}$	0.12 mrad	1.7 mrad	0.09 mrad	2.5 mrad

