

2007 Europhysics Conference on High Energy Physics Manchester 19-25 July 2007

The design of the MICE time of flight

MICE Collaboration

M. Bonesini

INFN, Sezione di Milano Bicocca - Dipartimento di Fisica G. Occhialini

Milano Italy

Outline

- □ Introduction
- Towards a Neutrino Factory
- □ The MICE cooling expt
- □ The design of MICE TOF
- Conventional and fine-mesh PMTs tests
- BTF testbeam results
- Conclusions

v beams: conventional and nufact beams

- Problem in conventional beams: a lot of minority components (beam understanding)
- Following muon collider studies, accelerated muons are ALSO an intense source of "high energy" v

$$\mu^- \rightarrow e^- v_\mu \overline{v}_e \quad \mu^+ \rightarrow e^+ \overline{v}_\mu v_e$$

- Crucial features
- high intensity (x 100 conventional beams)
- known beam composition

 $(50\% v_{\mu} 50\% v_{e})$

Possibility to have an intense v_e beam

Essential detector capabilities: 07 Manchester

detect μ and determine their sign

Sensitivity of Nufact

present limit from the CHOOZ experiment

0.75 MW JHF to super Kamiokande with an off-axis narrow-band beam, Superbeam: 4 MW CERN-SPL to a 400 kt water Cerenkov@ Fréjus (J-PARC phase II similar)

Neutrino Factory with 40 kton large magnetic detector.

Towards a Neutrino Factory: the challenges

•

- Target and collection (HARP/MERIT)
 - Maximize π^+ and π^- production
 - Sustain high power (MW driver)
 - Optimize pion capture INTENSE PROTON SOURCE (MW); GOOD COLLECTION SCHEME
- Muon cooling (MICE)
 - Reduce μ +/ μ phase space to capture as many muons as possible in an accelerator
 - Muon acceleration
 - Has to be fast, because muons are short-lived !
 - (RLA, FFAG, ...)

Muon ionization cooling

Stochastic cooling is too slow.

A novel method for μ + and μ - is needed: ionization cooling

principle

reality (simplified)

- Build a section of cooling channel long enough to provide measurable cooling (10%) and short enough to be affordable and flexible
- Wish to measure this change to 1%
- Requires measurement of emittance of beams into and out of cooling channel to 0.1%!
- Cannot be done with conventional beam monitoring device
- Instead perform a single particle experiment:
 - High precision measurement of each track (x,y,z,px,py,pz,t,E)
 - Build up a virtual bunch offline
 - Analyse effect of cooling channel on many different bunches
 - Study cooling channels parameters over a range of initial beam momenta and emittances

MICE setup: cooling + diagnostics

G4MICE simulation of Muon traversing MICE

M

Each spectrometer measures 6 parameters per particle x y t x' = $dx/dz = P_x/P_z$ $y' = dy/dz = P_y/P_z + dt/dz$ =E/P_

Determines, for an ensemble (sample) of N particles, the moments: Averages <x> <y> etc...

Second moments: variance(x) $\sigma_x^2 = \langle x^2 - \langle x \rangle^2 \rangle$ etc... covariance(x) $\sigma_{xy} = \langle x.y - \langle x \rangle \langle y \rangle \rangle$

Covariance matrix

$$= \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{xt} & \sigma_{xx'} & \sigma_{xy'} & \sigma_{xt'} \\ \dots & \sigma_{y}^{2} & \dots & \dots & \dots & \sigma_{yt'} \\ \dots & \dots & \sigma_{t}^{2} & \dots & \dots & \sigma_{tt'} \\ \dots & \dots & \dots & \sigma_{x'}^{2} & \dots & \sigma_{x't'} \\ \dots & \dots & \dots & \dots & \sigma_{y'}^{2} & \sigma_{y't'} \\ \dots & \dots & \dots & \dots & \dots & \sigma_{t'}^{2} \end{pmatrix}$$

Evaluate emittance with:

$$\varepsilon^{6D} = \sqrt{\det(\mathbf{M}_{xytx'y't'})}$$

 $\varepsilon^{4D} = \sqrt{\det(\mathbf{M}_{xyx'y'})} = \varepsilon_{\perp}^{2}$ M. Bonesini - HEP07 Manchester

Getting at e.g. $\sigma_{x'x'}$ is essentially impossible with multiparticle bunch measurements

Compare ε^{in} with ε^{out}

TOF station requirements

- Exp trigger, upstream/downstream PID and measure of t vs RF
- Work in a harsh environment (high incoming particle rate, high fringe fields from solenoids, X rays from converted e⁻) with good timing performances (σ_t~50 ps)

Tof resolution can be expressed as:

$$\sigma_{t} = \sqrt{\frac{\sigma_{scint}^{2} + \sigma_{PMT}^{2} + \sigma_{pl}^{2}}{N_{pe}}} + \sigma_{elec}^{2}$$
Some points to look to have high resolution TOFs

σ_{pl} dominated by geometrical dimensions ~√(L/Npe)
 σ_{scint} ~ 50-60 ps (mainly connected with produced number of γ's fast and scintillator characteristics, such as risetime)
 σ_{PMT} PMT TTS (typically 150-300 ps)
 + ENVIRONMENT

TOF design

 "conventional" X/Y scintillator structure with readout at both ends, to provide redundancy & intercalibration with inc. μ

 problem: choice of PMTs for high incident particle
 rate (1 MHz) and solenoid B fringe field

Exp. setup for PMT test: extensive studies

*Light source: Hamamatsu fast PLP-10 laser ($\lambda \approx 405 \text{ nm}$, FWHM 60 ps, 250 mW peak power)

•Optical system: x,y,z flexure movement + lenses/ filters to inject light into a CERAM/OPTEC multimode fiber (spread 15 ps/m)

•Optical signal 1-2000 p.e., in most tests 200- 300 p.e. (compatible with a MIP crossing a typical scintillator)

•Light monitor with a laser powermeter

Gain, timing and rate measurements for 1", 1.5", 2" fine-mesh PMTs and conv R4998 PMTs

VME acquisition with TDC, QADC measurements (P.H. + timing)

M. Bonesini - HEP07 Manchester

PMT under test

PMTs tests: Fine Mesh Photomultiplier Tubes

- Secondary electrons accelerated parallel to the B-field.
- Gain with no field: $5 \times 10^{5} 10^{7}$
- With B=1.0 Tesla: 2 × 10⁴ 2.5 × 10⁵
- Prompt risetime and good TTS

timing

• Manufactured by Hamamatsu Photonics

Measures at INFN LASA laboratory to study behaviour in B field (up to 1.2 T) as respect to gain, rate capability,

	R5505	R7761	R5924
Tube diameter	1″	1.5″	2 "
No. Of stages	15	19	19
Q.E.at peak	.23	.23	.22
Gain (B=0 T) typ	5.0 x 10 ⁵	1.0 x 10 ⁷	1.0 x 10 ⁷
Gain (B=1 T) typ	1.8 x 10 ⁴	1.5 x 10 ⁵	2.0 x 10 ⁵
Risetime (ns)	1.5	2.1	2.5
TTS (ns)	0.35	0.35	0.44

M. Bonesini - HEP07 Manchester

FINE-MESH TYPE

Rate effects (as a function of HV) Gain in B field (various orientations)

current

Use instead conventional PMTs: lower cost, better support from Hamamatsu

- Shielding issues: local or global shield (cage)
- Rate issue (active divider or booster)

M. Bonesini - HEP07 Manchester

With an external cage B field is reduced to tolerable levels for conventional R4198 PMTs

RF background: yet another problem

- RF cavities produce electron due to field emission
 - converted to x-rays in absorbers
 - $\boldsymbol{\cdot}$ causing backgrounds in trackers and TOF stations
 - \cdot in phase with muons we want (peak at RF crest)
- Emission rate rises very steeply with electric field and magnetic field (1.5-2.5 t at MICE cavity location)
- test problem with MTA setup at FNAL
 rates: ~26KHz/cm² for 8 MV/m at B=0 at 4.5 m f rom RF cavity, with energy deposit ~ 400-600 KeV (for a MIP ~5 MeV)_{M. Bonesini - HEP07 Manchester}

BTF testbeam

Energy range	25-750 MeV e⁻/e⁺	
Max rep rate	50 Hz	
Pulse duration	10 ns	
Current/pulse	1-10 ¹⁰ particles	

- tests with e at BTF LNF
- different scintillator and PMTs used : best BC4040 or BC420 + R4998 PMTs
- fast MCA analysis
- Similar results with final electronics (new caen V1290 TDC and V1724 FADC +custon splitter/stretcher)

PID downstream: TOF2 inside MICE

Conclusions

"conventional" scintillator based TOF stations
 in an "unconventional" environment: high particle rate, B fringe fields, X-rays from converted e from RF
 needs a lot of tests for components
 soon to work in MICE experiment

•Acknowledgements: many thanks to the MICE TOF team and in particular to R. Bertoni, J.S. Graulich, Y. Kharadzhov, R. Sandstrom, G. Ghislain and J. Cobb