Vertex reconstruction at the CMS experiment

W.Erdmann, Paul Scherrer Institut for the CMS Collaboration HEP 2007 Manchester
19-25 September 2007

- Introduction
- (Robust) Algorithms
- Comparison of fitters
- Vertex finding
- Conclusions

Introduction: The CMS Experiment

Compact Muon Solenoid (CMS) multi-purpose detector full event reconstruction LHC: pp collider, $\sqrt{s} = 14TeV$ High luminosity $10^{34}cm^{-2}s^{-1}$

- 20 inelastic collisions
- 2000 tracks per bunch crossing

first collisions 2008

lower luminosity for the first years

W. Erdmann Vertex reconstruction at the CMS experiment

R=4cm ... 110cm , L=5.4m

- 4 T solenoidal field
- 10 layers of silicon strips,
 6 rφ and 4 zstereo
- 3 layers pixels (space points)
- disks in the forward region

3d tracking, comparable $r\phi$ and z resolution

Vertex Finding:

within a set of tracks (e.g. full event, jet):

- detect possible vertices (fixed or variable number)
- assign tracks to vertices
- $\rightarrow examples: primary vertex, b-tagging$

Vertex Fitting:

for a given vertex hypothesis (set of tracks):

• best estimate of the vertex position

+ sometimes

- best estimate of track parameters at the vertex
- vertex quality, goodness of fit

 \rightarrow examples: exclusive decays, $B \rightarrow J/\psi \Phi, \tau \rightarrow 3$ -prong

Most algorithms do a bit of both

Vertex Fitting, Robust Algorithms

standard fitter Kalman filter (equiv. least square)

very sensitive to outliers

• resolution tails

bad parameter track measurements/error estimates (pattern recognition, interactions with detector material)

• wrong track–vertex assignment

often not a priori known

robust algorithms in CMS

	resolution tails	mis-assigned tracks			
Trimmed Kalman Vertex Fit	remove outliers one by one				
Adaptive Vertex Fit	downweight outliers				
Gaussian Sum Fit	model tails				

a robustified Gaussian Sum Fit is also possible

Trimmed Kalman Vertex Fit

Initial vertex

Adaptive Vertex Fit

- weighted tracks, "soft assignment"
- track weight based on distance to vertex \rightarrow iterative procedure
- weight function

$$w_i = \frac{1}{1 + \exp\frac{\chi_i^2 - \chi_C^2}{2T}}$$

- cut-off χ^2_C , e.g. 9 $\chi^2_i > \chi^2_C \Rightarrow w < 0.5$
- -T ("Temperature"), sharpness of the weight function
- starts at high "T", avoid local minima
- T is decreased between iterations (annealing), stops at T = 1
- very robust against outliers

Comparison of Fitters, $t\bar{t}H(120 \text{GeV})$ primary vertex

non-gaussian tails of track parameters affect (linear) Kalman Vertex Fitter robust algorithms : 30% improved resolution, reduced tails, correct covariance small failure rate (< 0.1%), CPU time $\mathcal{O}(5\times)$

HEP 2007

Properties of Fitters, $t\bar{t}H(120\text{GeV})$ **primary vertex**

Kalman Vertex Fitter: up to 80% of high multiplicity vertices have $\operatorname{Prob}(\chi^2) < 0.01$ robust algorithms : reject/downweight outliers \Rightarrow "pseudo χ^2 " $\mathcal{O}(10\%)$ tracks removed (Adaptive Vertex Fitter: $\sum (1 - w_i)$)

Comparison of Fitters

event sample	rec. tracks	coordinate	Std. Dev. $[\mu m]$			pull		
$B_s \to J\psi\Phi$, secondary	4	Х	54.4	53.1	53.6	1.08	1.02	1.04
		\mathbf{Z}	72.9	72.3	74.2	1.08	1.02	1.05
$H \to \gamma \gamma (\mathrm{GF}), \mathrm{primary}$	23.2	Х	27.9	21.9	22.8	1.11	0.9	0.93
		Z	54	48.3	49	1.07	0.94	0.95
udsg–jets	33.3	Х	19	13.2	13.5	1.45	0.97	0.99
		Z	23.7	18.3	18.8	1.32	0.96	0.98
Drell – Yan	99.7	Х	15.3	12.6	13.3	1.51	1.21	1.21
	22.1	Z	26.4	22.3	22.8	1.48	1.18	1.18
$t\bar{t}H$ 44.3	11 3	X	13.8	9.38	9.72	1.51	0.99	1.01
	44.0	\mathbf{Z}	17.7	12.9	13.2	1.46	1	1.02

CMS, full simulation, ORCA framework. Kalman, Adaptive, Trimmed

no difference for low multiplicity

robust fitters significantly better for high multiplicities:

improved resolution and error estimates

Gaussian Sum:

- sum of gaussians models non-gaussian pdf
- successfully used in CMS for electron track reconstruction

Gaussian Sum Vertex Fit:

- implemented as parallel Kalman filters
- improves resolution reduces tails of vertex coordinates
- combinatorial growth of components while adding tracks can be reduced without much degradation
- vertex fit recently implemented in CMS

HEP 2007

Trimmed Kalman Vertex Finder

- like trimmed fitter, but re-use rejected tracks to form new vertices
- b vertex finding efficiency 63.3%b-jets, $p_T=20-70 \text{GeV}$, $\ell_T=100\mu\text{m}$ -2cm vertex rate in uds events $\mathcal{O}(1\%)$

Tertiary Vertex Finder

• find $b \rightarrow c$ daughter tracks to improve b-tagging/ c rejection

Adaptive Multi-Vertex Fit in preparation

- primary and secondary vertex "compete" for for tracks
- b-tagging \rightarrow presentation of Ian Tomalin

Primary Vertex Reconstruction

- track selection select tracks compatible with the beam-line distance of closest approach $< 3\sigma$ (5 σ)
- cluster tracks according to their z-coordinate at the point of closest approach

split clusters where $\Delta > 1 \mathrm{mm}$

- fit tracks of a cluster to a common vertex Kalman Filter (Adaptive Vertex Fit)
- clean-up cuts
 - distance of vertex to be am-line $<200\mu{\rm m}$
 - vertex fit χ^2 probability > 1% (not needed for adaptive fit)
- sort vertices by $\sum p_T^2$, "signal " vertices usually have much highest $\sum p_T^2$

Primary Vertex Reconstruction

efficiency = ϵ_{tag} = prob. of true primary within 500 μ m ¹⁰⁰ of tagged primary ₉₀

- full detector simulation
- low luminosity pile-up
- including possible track mis-assignment

efficiency and resolution improve when the p_T cut is low-ered

beam constraint under study

Online Pixel Primary Vertex Reconstruction

- based on pixel tracks (triplets)
- provides z-coordinate of the Primary Vertex in High Level Triggers
- similar clustering, no fit
- high efficiency, resolution better than 50 μ m

HEP 2007

Vertex Reconstruction in CMS

- convential Kalman Vertex Fitter ok for low multiplicity vertices
- Adaptive vertex fit superior for high multiplicity vertices
- Gaussian Sum fitter promising for special cases (electrons)
- primary and secondary vertex finding ported to new CMS software framework
- several ongoing developments