Measurements of Hadronic Cross Sections at CLEO

Sheldon Stone, Syracuse University

Reasons for Measurements

- e⁺e⁻ annihilations of hadrons allows us to explore the point couplings of a virtual γ with J^{PC}=1⁻⁻ final states
- Since $R(s) = \sigma_0 \left(e^+ e^- \rightarrow \text{hadrons} \right) / \sigma_0 \left(e^+ e^- \rightarrow \mu^+ \mu^- \right)$ and

$$R(s) = R_0 \left| 1 + C_1 \frac{\alpha_s(s)}{\pi} + C_2 \left(\frac{\alpha_s(s)}{\pi} \right)^2 + C_3 \left(\frac{\alpha_s(s)}{\pi} \right)^3 + O\left(\alpha_s^4(s) \right) \right|$$

with C₁=1, C₂=1.525 and C₃=-11.686 We can measure α_s and Λ

Reasons for Measurements II

- We can measure exclusive σ's e⁺e⁻→D^(*)D^(*), also e⁺e⁻→D_S^(*)D_S^(*).
- Predictions from Eichten et al (PRD 21, 203, 1980) involve coupling of open cq cq channels to cc states, so called "coupled channel model." New predictions based on updated masses are now available with more modern theoretical inputs to come soon.
- Other predictions (Barnes [hep-ph/0412057]) & postdictions (Dubynskiy & Voloshin [hep-ex/0608179])

Measurement of R

We measure σ_{obs}(s)=σ_{sv}(s)+σ_{hard}(s)+σ_{res}(s)
 σ_{sv}(s) is due to soft & virtual γ radiation, σ_{sv}(s) ∝ σ₀(s)

- $\sigma_{hard}(s)$ is due to hard photon radiation, $\propto \sigma_0(s)$
- $\sigma_{res}(s)$ is due to $e^+e^- \rightarrow \gamma qq$, and the qq form a narrow resonance.
- We then extract $\sigma_0(s)$

Experimental Procedure

- Must evaluate energy dependent efficiencies
- Must remove $e^+e^- \rightarrow e^+e^- + hadrons (2\gamma)$ background
- Must reduce and correct for $\tau^+\tau^-$ production
- Must correct for tails of narrow resonances
- Must make radiative corrections
- Must evaluate systematic errors

See D. Besson et al arXiv:0706.2813 [hepex] for details

Selection Requirements

Many requirements for accepting individual tracks and EM showers

Many requirements on events

Variable	Allowed range
$ Z_{\text{vertex}} $	< 6.0 cm Reduces beam gas
$E_{\rm vis}/2E_{\rm beam}$	> 0.5 Reduces 2γ & beam gas background
$ P_{\rm z} /E_{\rm vis} $ H_2/H_0	< 0.5 f < 0.9 Event shape cut for $\ell^+\ell^-$ pair bkgrnd
$E_{\rm cal}/2E_{\rm beam}$	(0.15, 0.9) E _{cal} is most energetic shower, reduces
$E_{\gamma}^{\rm max}/E_{\rm beam}$	< 0.8 Bhabha's and τ -pairs
$N_{ m ChargedTrack}$	≥ 4 Reduces E&M
	Reduces 2γ , beam gas & τ pair

EPS Manchester, July 19 – 25, 2007

Example

Systematic Errors

Dominant source. Errors given in %

Energy (GeV)	10.538	10.330	9.996	9.432	8.380	7.380	6.964
Luminosity	1.00	1.10	1.10	1.10	0.90	0.90	1.00
Trigger	0.09	0.09	0.11	0.08	0.12	0.13	0.19
Radiative	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Correction							
Multiplicity	1.06	1.38	0.99	0.84	0.43	0.38	0.38
Correction							
Event	1.51	1.09	1.31	1.31	1.05	1.02	0.79
selection							
Total	2.32	2.30	2.21	2.15	1.76	1.74	1.68
Common	1.87	1.67	1.85	1.87	1.62	1.64	1.58
Uncorrelated	1.37	1.59	1.22	1.05	0.70	0.57	0.55

CLEO Results for R

EPS Manchester, July 19 – 25, 2007

Comparison with other R Measurements

10

Extraction of α_s

 α_{s} is determined at each energy point • We then determine Λ using 4-quark flavors • Using our average value for Λ , we find $\alpha_{s}(M_{Z}^{2}) = 0.126 \pm 0.005^{+0.015}_{-0.011}, \quad \Lambda = 0.31^{+0.09}_{-0.08} + 0.29_{-0.021} \text{ GeV}$ Compared with World Averages from Bethke $\alpha_s (M_Z^2) = 0.1189 \pm 0.0010, \Lambda = 0.29 \pm 0.04 \text{ GeV}$

Alternative Extraction

Kühn et al (LTH 749) include quark mass effects and different matching between 4 & 5 flavor effective theories

They find

$$\alpha_{s}\left(M_{Z}^{2}\right) = 0.110^{-0.010+0.010}_{-0.012-0.011},$$

 $\Lambda = 0.13^{+0.11+0.11}_{-0.07-0.07} \text{ GeV}$

Charm Threshold: The Territory

Techniques For Measuring Exclusive Charm Production

- Many different modes are produced DD, DD*, D*D*, D_sD_s, D_sD_s*, ...
- Need to distinguish each variant & measure its cross-section
- Fully reconstruct charm decays, e.g. $D^{\circ} \rightarrow K^{-}\pi^{+}$
 - Use invariant mass of decay products

beam constrained mass

$$M_{bc} = \sqrt{E_{beam}^2 - \left(\sum_i \vec{p}_i\right)^2}$$

• $\Delta E = E_{\text{beam}} - E_{\text{D}}$,

Simulation: $\Delta E vs M_{bc}$ at 4160 MeV

Reconstruct $D^{\circ} \rightarrow K^{-}\pi^{+}$, clean separations

Also Measure Inclusive D_(S) Yields

Exclusive Two-Body Rates for D's

17

Exclusive Two-Body Rates for D_S

Compare 3 methods

Hadronic event counting is R (not radiatively corrected) Discrepancy in exclusive rate and total

Discovery of D*D π Production

No evidence for DDπ No theoretical predictions

Coupled Channel Model (D's)

New Eichten (intermediate) predictions "agree" with D*D but are much lower for D*D*

Coupled Channel Model (D_S)

Doesn't agree at D_S⁺D_S⁻ threshold Lower than D_S^{*}D_S

D*D^(*) Radiatively Corrected

New Resonance at D*D* Threshold?

Dubynskiy & Voloshin (DV) [hep-ph/0608179] • They model behavior of individual σ 's as $\sigma_0 = \pi \alpha^2/3 s$ $\sigma(DD) = \sigma_0 2 v^3 R_1$ v is velocity of D • $\sigma(D_S D_S) = \sigma_0 v^3 R_2$ #'s take care of $\sigma(D^*D) = \sigma_0 6(2p/\sqrt{s})R_3$ spin counting $= \sigma(D^*\overline{D}^*) = \sigma_0 14 v^3 R_4$ • The $R_k = |a_k + (b_k + ic_k/D(E))|^2$, where $D(E) = E - W_0 + \frac{i}{4} \left[2\Gamma_0 + \frac{(E - 2M)^{3/2}}{w^{1/2}} \right]$, where w is the coupling to the D*D* resonance

DV Fits To CLEO Data

Resonance at 4013±4 MeV, Γ=66±8 MeV explains most data
 But need interfering narrow new resonance to explain dip in DD at 4015 MeV (See B. Lang thesis, Univ. of Minnesota)

EPS Manchester, July 19 – 25, 2007

Conclusions

- CLEO has measured R precisely between 6.96–10.54 GeV
- Determining $\alpha_s \left(M_Z^2 \right) = 0.126 \pm 0.005^{+0.015}_{-0.011}$, $\Lambda = 0.31^{+0.09}_{-0.08} + 0.29_{-0.021}$ GeV
- Exclusive charm production above threshold has been measured.
 - $\sigma(D_S D_S)$ peaks at 4010 MeV with a value of 0.27 nb
 - $\sigma(D_S^*D_S)$ peaks at 4170 MeV with a value of 0.92 nb, the energy CLEO has used for D_S decay studies

Experimentally, new charmonium states are being detected at an alarming rate. Perhaps we are even now seeing the evidence of resonances in distribution dips (i.e. 4015 & 4260 MeV)

 These studies should lead to a better understanding of QCD

The Enc

Reasons for Measurements

e⁺e⁻ annihilations of hadrons allows

The problem we face is most aptly summarized by Fig. 5, which shows the observed resonances that we ascribe to $c\bar{c}$ states, and the spectra of the known quasi-two-body charmed meson states in the vicinity of the charm threshold. This is a classic problem of quantum mechanics: a discrete set of states in one portion of the Hilbert space suspended in a continuum of states belonging to another or the trace

(3) The decay amplitudes for $c\overline{c} \rightarrow \overline{c}q + q\overline{c}$ are oscillatory functions of momentum, with a node structure that is determined by the radial nodes in the $c\overline{c}$ wave function. This provides a qualitative understanding of the peculiar branching ratios into various charmed-meson channels observed at 4.03 GeV. The prediction of a zero in $\sigma(e^+e^- \rightarrow D\overline{D})$ near 4.0 GeV should be tested experimentally because it would, for the first time, confirm in detail the structure of a quark-antiquark radial wave function.

D_S Branching Fractions (%)

Modes	Branching Fraction	
D^0 decay mode		
$K^{-}\pi^{+}$	$3.91\pm0.12\%$	
$K^{-}\pi^{+}\pi^{0}$	$14.94 \pm 0.56\%$	
$K^{-}\pi^{+}\pi^{+}\pi^{-}$	$8.29 \pm 0.36\%$	
D^+ decay mode		
$K^{-}\pi^{+}\pi^{+}$	$9.52 \pm 0.37\%$	
$K^{-}\pi^{+}\pi^{+}\pi^{0}$	$6.04 \pm 0.28\%$	
$K_s \pi^+$	$1.55 \pm 0.08\%$	
$K_s \pi^+ \pi^0$	$7.17\pm0.43\%$	
$K_s \pi^+ \pi^- \pi^+$	$3.2\pm0.19\%$	
$K^{+}K^{-}\pi^{+}$	$0.97 \pm 0.06\%$	
	Branching Fra	action
K^+K^- Mass [1	[b] Branching Fraction [Fraction of the second state of the seco	action 5
K^+K^- Mass [1	$\begin{array}{c} \text{Branching Fra}\\ \hline 6 \end{bmatrix} 1.98 \pm 0.1\\ 2.2 \pm 0.6\end{array}$	action 5
K^+K^- Mass [1	$\begin{array}{c c} & \text{Branching Fra}\\ \hline 6 & 1.98 \pm 0.1\\ & 2.2 \pm 0.6\\ & 0.58 \pm 0.0 \end{array}$	action 5 7
K ⁺ K ⁻ Mass [1 .] [1]	$\begin{array}{c c} & \text{Branching Fra}\\ \hline 6 & 1.98 \pm 0.1\\ & 2.2 \pm 0.6\\ & 0.58 \pm 0.0\\ & 4.3 \pm 1.2 \end{array}$	action 5 7
K ⁺ K ⁻ Mass [1 .] [1] I, 16]	$ \begin{array}{c c} & \text{Branching Fra} \\ \hline 6 & 1.98 \pm 0.1 \\ & 2.2 \pm 0.6 \\ \hline & 0.58 \pm 0.0 \\ \hline & 4.3 \pm 1.2 \\ & 0.7 \pm 0.02 \end{array} $	action 5 07 1
K^+K^- Mass [1 .] [1] [1, 16] $\pi^+\pi^0$ [1]	$\begin{array}{c c} \text{Branching Fra}\\ \hline 6 & 1.98 \pm 0.1\\ & 2.2 \pm 0.6\\ \hline 0.58 \pm 0.0\\ & 4.3 \pm 1.2\\ \hline 0.7 \pm 0.0\\ & 1.8 \pm 0.5\end{array}$	action 5 7 1
$[1] \\ [1] $	$ \begin{array}{c c} \text{Branching Fra}\\ \hline 6 & 1.98 \pm 0.1\\ \hline 2.2 \pm 0.6\\ \hline 0.58 \pm 0.0\\ \hline 4.3 \pm 1.2\\ \hline 0.7 \pm 0.02\\ \hline 1.8 \pm 0.5\\ \hline 3.4 \pm 1.2\\ \end{array} $	action 5 7 1
	D^0 decay mode $K^-\pi^+$ $K^-\pi^+\pi^0$ $K^-\pi^+\pi^+\pi^ D^+$ decay mode $K^-\pi^+\pi^+\pi^ K^-\pi^+\pi^+\pi^0$ $K_s\pi^+\pi^-\pi^+$ $K_s\pi^+\pi^-\pi^+$ $K_s\pi^+\pi^-\pi^+$ $K_s\pi^+\pi^-\pi^+$ $K^+K^-\pi^+$	Modes Branching Fraction D^0 decay mode $K^-\pi^+$ $K^-\pi^+\pi^0$ $14.94 \pm 0.12\%$ $K^-\pi^+\pi^+\pi^0$ $14.94 \pm 0.56\%$ $K^-\pi^+\pi^+\pi^ 8.29 \pm 0.36\%$ D^+ decay mode $K^-\pi^+\pi^+\pi^+$ $K^-\pi^+\pi^+\pi^+$ $9.52 \pm 0.37\%$ $K^-\pi^+\pi^+\pi^+\pi^0$ $6.04 \pm 0.28\%$ $K_s\pi^+$ $1.55 \pm 0.08\%$ $K_s\pi^+\pi^0$ $7.17 \pm 0.43\%$ $K_s\pi^+\pi^-\pi^+$ $3.2 \pm 0.19\%$ $K^+K^-\pi^+$ $0.97 \pm 0.06\%$