Search for CP Violation in B mixing and decay at **BABAR**

Nicolas ARNAUD

Laboratoire de l'Accélérateur Linéaire **CNRS-IN2P3**

EPS 2007, Manchester, July 19-25

Outline

- New preliminary results for direct CP violation searches
 - \rightarrow First observation of $\mathbf{B} \rightarrow \mathbf{b}_1 \mathbf{h}$ decays
 - \rightarrow First observation of $B^+ \rightarrow K^+K^-\pi^+$ decay
 - \rightarrow Update on $B^+ \rightarrow {\eta, \eta', \omega}h^+$
 - \rightarrow Update on $B^{\pm} \rightarrow h^{\pm}\pi^{0}$ and $B^{0} \rightarrow \pi^{0}\pi^{0}$

Charmless B decays

- All asymmetries statistically dominated
- All results use the full Runs 1-5 BaBar dataset (~ 383 million BB pairs)
- See J. Burke talk for additional details, including branching fractions
- See M. Bomben and J. Thompson talks for β charm(less) measurements
- Other topic-related BaBar results:
 - \rightarrow CP violation observed in $B^0 \rightarrow \eta' K^0$
 - \rightarrow Observation of CP violation in $B^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow K^+\pi^-$ 2

Charmless B decays

- Proceed through $b \rightarrow u$ tree diagrams $b \rightarrow \{s,d\}$ penguin diagrams
- Trees and penguins can have similar amplitudes

 → Interferences potentially lead to significant direct CP violation
 → Search for New Physics processes
- Measurements add constraints on the CKM parameters
- Phenomenological interest: comparing measurements allow one to test/improve theoretical calculations and validate models
- More details about the analysis procedures can be found in backup slides and in other EPS BaBar presentations

$$B \rightarrow b_1 h$$

- Several decay searched: $B^+ \rightarrow b_1^{\ 0}h^+$, $B^0 \rightarrow b_1^{\mp}\pi^{\pm}$, $B^0 \rightarrow b_1^{-}K^+$
 - \rightarrow First observation/evidence depending on the channel

 $\rightarrow B^0 \rightarrow a_1^+\pi^-$ observed in 2006; evidences for $B^+ \rightarrow (a_1\pi)^+$

4

- b_1 reconstructed through $b_1 \rightarrow \omega(\rightarrow \pi^+\pi^-\pi^0) \pi$, $\pi^0 \rightarrow \gamma\gamma$ Assumption: $BF(b_1 \rightarrow \omega\pi) = 100\%$
- Extended maximum likelihood fits (b₁ and ω masses included)
 → Signal (truth-matched and misreconstructed),
 qq̄ and charm B-bkg, charmless B-bkg species

$B \rightarrow b_1h$: direct CPV parameters

• Two additional measured quantities for $B^0 \rightarrow b_1^{\mp} \pi^{\pm}$:

$$C \quad \text{and} \quad \Delta C$$
Flavor-dependent
direct CPV
$$\mathcal{A}_{ch} = \frac{\Gamma(\overline{B}^{0} \to b_{1}^{+}\pi^{-}) + \Gamma(B^{0} \to b_{1}^{+}\pi^{-}) - [\Gamma(\overline{B}^{0} \to b_{1}^{-}\pi^{+}) + \Gamma(B^{0} \to b_{1}^{-}\pi^{+})]}{\Gamma(\overline{B}^{0} \to b_{1}^{+}\pi^{-}) + \Gamma(B^{0} \to b_{1}^{+}\pi^{-}) + [\Gamma(\overline{B}^{0} \to b_{1}^{-}\pi^{+}) + \Gamma(B^{0} \to b_{1}^{-}\pi^{+})]}$$

$$C + \mathcal{A}_{ch}\Delta C = \frac{\Gamma(B^{0} \to b_{1}^{+}\pi^{-}) + \Gamma(B^{0} \to b_{1}^{-}\pi^{+}) - [\Gamma(\overline{B}^{0} \to b_{1}^{+}\pi^{-}) + \Gamma(\overline{B}^{0} \to b_{1}^{-}\pi^{+})]}{\Gamma(B^{0} \to b_{1}^{+}\pi^{-}) + \Gamma(B^{0} \to b_{1}^{-}\pi^{+}) + [\Gamma(\overline{B}^{0} \to b_{1}^{+}\pi^{-}) + \Gamma(\overline{B}^{0} \to b_{1}^{-}\pi^{+})]}$$

$$\Delta C + \mathcal{A}_{ch}C = \frac{\Gamma(\overline{B}^{0} \to b_{1}^{-}\pi^{+}) + \Gamma(B^{0} \to b_{1}^{+}\pi^{-}) - [\Gamma(B^{0} \to b_{1}^{-}\pi^{+}) + \Gamma(\overline{B}^{0} \to b_{1}^{-}\pi^{+})]}{\Gamma(\overline{B}^{0} \to b_{1}^{-}\pi^{+}) + \Gamma(B^{0} \to b_{1}^{+}\pi^{-}) - [\Gamma(B^{0} \to b_{1}^{-}\pi^{+}) + \Gamma(\overline{B}^{0} \to b_{1}^{+}\pi^{-})]}$$

Systematics

- Charge-dependent effects (interactions, reconstruction, PID) \rightarrow bias -0.010 ± 0.005 for modes with K 0.000 ± 0.005 for modes with π
- B-bkg asymmetry: ~ 0.01 for all modes
- Systematics on C and ∆C completely dominated by uncertainties assigned from possible bias observed in toy studies
- Systematics from tagging and PDF parameterizations much smaller

Results

$\begin{array}{l} A_{ch}(B^+ \rightarrow b_1^{\ 0}\pi^+) \\ A_{ch}(B^+ \rightarrow b_1^{\ 0}K^+) \\ A_{ch}(B^0 \rightarrow b_1^{\ -}K^+) \end{array}$	$= 0.05 \pm 0.16 \pm 0.02$ = -0.46 \pm 0.20 \pm 0.02 = -0.07 \pm 0.12 \pm 0.02	No evidence for
${\rm A_{ch}}({\rm B}^0 \rightarrow b_1^{\!\scriptscriptstyle \mp} \pi^{\pm})$	$= -0.05 \pm 0.10 \pm 0.02$	direct CP-violating asymmetries
$C(B^0 \rightarrow b_1^{\mp} \pi^{\pm})$	$= -0.21 \pm 0.23 \pm 0.05$	
$\Delta C(B^0 \rightarrow b_1^{\mp} \pi^{\pm})$	$= -1.04 \pm 0.23 \pm 0.08$	
Consistent with the e weak axial vector cu	expected suppression of B^0 irrent odd in G-Parity, b ₁ e	$b \rightarrow b_1^+ \pi^-$: Experimental BF: $(0 \pm 10)\%$

Forbidden!

 $B^+ \rightarrow K^+ K^- \pi^+$

• Main contribution from $b \rightarrow d$ penguin

- 3 body analysis
 - \rightarrow Extended maximum likelihood fit

<u>Species:</u> signal, continuum background, 3 B \overline{B} background classes \longrightarrow K

 $\begin{pmatrix} K^{+}\pi^{+}\pi^{-}, K_{S}^{\ 0}K^{+} \\ K^{+}K^{-}K^{+}, K^{+}K^{-} K_{S}^{\ 0}, \overline{D}^{0}\pi^{+} \\ Other \ decays \end{pmatrix}$

 \rightarrow Not a full Dalitz Plot (DP) analysis yet

 \rightarrow DP dependence accounted for the inclusive branching fraction

$B^+ \rightarrow K^+ K^- \pi^+$ Charge Asymmetry

- Asymmetry computed by fitting separately B⁻ and B⁺ samples
- Systematics dominated by detector charge asymmetry (2%) and B-bkg contents uncertainty (1.5%)

$$A_{ch} = \frac{\Gamma(B^{-} \to K^{+}K^{-}\pi^{-}) - \Gamma(B^{+} \to K^{+}K^{-}\pi^{+})}{\Gamma(B^{-} \to K^{+}K^{-}\pi^{-}) + \Gamma(B^{+} \to K^{+}K^{-}\pi^{+})} = \frac{-0.004 \pm 0.104 \pm 0.02}{\text{No significant asymmetric}}$$

5

'V

$B^+ \rightarrow \{\eta, \eta', \omega\}h^+$ Update

• Different decay chains reconstructed: $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$ $\eta' \rightarrow \pi^+ \pi^- \pi^0$ and $\eta' \rightarrow \rho^0 (\rightarrow \pi^+ \pi^0) \gamma$ $\omega \rightarrow \pi^+ \pi^- \pi^0$

- Extended maximum likelihood fit separately for each decay chain
- Likelihoods combined (+ systematics) \Rightarrow charged asymmetries

$B^+ \rightarrow \{\eta, \eta', \omega\}h^+$ Results

Charged asymmetry	Previous BaBar result	New BaBar result
$B^+ \rightarrow \eta \pi^+$	$-0.13 \pm 0.12 \pm 0.01$	$-0.08 \pm 0.10 \pm 0.01$
$B^+ \rightarrow \eta K^+$	$-0.20 \pm 0.15 \pm 0.01$	$-0.22 \pm 0.11 \pm 0.01$
$B^+ \rightarrow \eta' \pi^+$	$0.14 \pm 0.16 \pm 0.01$	$0.21 \pm 0.17 \pm 0.01$
$B^+ \rightarrow \eta' K^+$	$0.03 \pm 0.03 \pm 0.02$	$0.010 \pm 0.022 \pm 0.006$
$B^+ \rightarrow \omega \pi^+$	$-0.01 \pm 0.10 \pm 0.01$	$-0.02 \pm 0.08 \pm 0.01$
$B^+ \rightarrow \omega K^+$	$0.05 \pm 0.09 \pm 0.01$	$-0.01 \pm 0.07 \pm 0.01$

• No evidence for direct CP-violation charge asymmetry

• World average: A_{ch} for $B^+ \rightarrow \eta \pi^+ (\eta K^+)$ is negative and 2.3 (3.0) σ away from 0 whereas theoretical predictions are positive Williamson-Zupan PRD 74 (2006) 014003

$B^{\pm} \rightarrow h^{\pm}\pi^{0}$ and $B^{0} \rightarrow \pi^{0}\pi^{0}$ Updates

Analysis similar to ICHEP2006
 → Merged π⁰s and γ conversions used
 to reconstruct events

0707.2798 [hep-ex] Submitted to PRD-RC

- Extended maximum likelihood fits
 - → Signal, continuum and B-background components
 - \rightarrow Simultaneous fit of the $B^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ and $B^{\pm} \rightarrow K^{\pm}\pi^{0}$ species
- Time-integrated CP asymmetry in $B^0 \rightarrow \pi^0 \pi^0$ dominated by B-bkg CP content and tagging
- Detector charge asymmetry better controlled (control samples)
 → dominant systematic error reduced for the charged asymmetries
- Main other systematics: PDF parameterizations (ΔE and Fisher) ₁₂

Results

$C = -\Gamma(B^0 \to \pi^0 \pi^0) - \Gamma(\overline{B}{}^0 \to \pi^0 \pi^0)$	τ^{0}) $\Gamma(B^{-} \rightarrow h^{-}\pi^{0}) - \Gamma(B^{+} \rightarrow h^{+}\pi^{0})$
$C_{\pi^0\pi^0} - \frac{\Gamma(B^0 \to \pi^0\pi^0) + \Gamma(\overline{B}{}^0 \to \pi^0\pi^0)}{\Gamma(B^0 \to \pi^0\pi^0) + \Gamma(\overline{B}{}^0 \to \pi^0\pi^0)}$	$\overline{\tau^{0}} \qquad A_{h^{\pm}\pi^{0}} - \overline{\Gamma(B^{-} \to h^{-}\pi^{0})} + \Gamma(B^{+} \to h^{+}\pi^{0})$

Asymmetry	ICHEP 2006	EPS 2007
$C_{\pi^0\pi^0}$	$-0.33 \pm 0.36 \pm 0.05$	$-0.49 \pm 0.35 \pm 0.05$
$A_{\pi^{\pm}\pi^{0}}$	$-0.019 \pm 0.088 \pm 0.014$	$0.033 \pm 0.083 \pm 0.009$
$A_{K^{\pm}\pi^{0}}$	$0.016 \pm 0.041 \pm 0.012$	$0.030 \pm 0.039 \pm 0.010$

• Shifts in central values due to new data

Results

$C = -\frac{\Gamma(B^0 \to \pi^0 \pi^0) - \Gamma(\overline{B}{}^0 \to \pi^0 \pi^0)}{\Gamma(\overline{B}{}^0 \to \pi^0 \pi^0)}$	$A = -\frac{\Gamma(B^- \to h^- \pi^0) - \Gamma(B^+ \to h^+ \pi^0)}{\Gamma(B^+ \to h^+ \pi^0)}$
$C_{\pi^{0}\pi^{0}} = \overline{\Gamma(B^{0} \to \pi^{0}\pi^{0})} + \Gamma(\overline{B}^{0} \to \pi^{0}\pi^{0})$	$A_{h^{\pm}\pi^{0}} = \overrightarrow{\Gamma(B^{-} \to h^{-}\pi^{0})} + \Gamma(B^{+} \to h^{+}\pi^{0})$

Asymmetry	ICHEP 2006	EPS 2007
$C_{\pi^0\pi^0}$	$-0.33 \pm 0.36 \pm 0.05$	$-0.49 \pm 0.35 \pm 0.05$
$A_{\pi^{\pm}\pi^{0}}$	$-0.019 \pm 0.088 \pm 0.014$	$0.033 \pm 0.083 \pm 0.009$
$A_{K^{\pm}\pi^{0}}$	$0.016 \pm 0.041 \pm 0.012$	$\underbrace{0.030 \pm 0.039 \pm 0.010}_{0.030 \pm 0.010}$

Results used to improve constraints on α

Very different from the K⁺ $\pi^$ asymmetry measured by BaBar $A_{K^+\pi^-} = -0.107 \pm 0.018 \stackrel{+0.007}{_{-0.004}}$

→ Color-suppressed tree and electroweak penguin amplitudes are important

M. Gronau and J. L. Rosner, Phys. Rev. D 71, 074019 (2005);
M. Gronau, Phys. Lett. B 627, 82 (2005);
M. Gronau and J. L. Rosner, Phys. Rev. D 59, 113002 (1999);
H. J. Lipkin, Phys. Lett. B 445, 403 (1999).

A. Buras et al, Phys. Rev. Lett. 92, 101804 (2004);
 A. Buras et al Nucl. Phys. B 697, 133 (2004).

Conclusions

- Several new/updated BaBar measurements of direct CP violation
 - \rightarrow First observations/evidence of the $B \rightarrow b_1 h$ modes
 - \rightarrow First observation of $B^+ \rightarrow K^+ K^- \pi^+$
 - \rightarrow Updates on $B^+ \rightarrow \{\eta, \eta', \omega\}h^+$ and $B^{\pm} \rightarrow h^{\pm}\pi^0, B^0 \rightarrow \pi^0\pi^0$
- No new evidence for direct CP violation in charmless B-decays
- More results to be expected: new data & complex analysis techniques
- Experimental and theoretical improvements benefit from each other
- CP violation observed in $B^0 \rightarrow \eta' K^0$ PRL 98, 031801 (2007) $S = 0.58 \pm 0.10 \pm 0.03$ $C = -0.16 \pm 0.07 \pm 0.03$
- Observation of CP violation in $B^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow K^+\pi^-$

$$\begin{split} S_{\pi\pi} &= -0.60 \ \pm 0.11 \pm 0.03 & (5.2\sigma) \\ C_{\pi\pi} &= -0.21 \ \pm 0.09 \pm 0.02 & (2.2\sigma) \\ A_{K\pi} &= -0.107 \pm 0.018 \, {}^{+0.007}_{-0.004} & (5.5\sigma) \end{split}$$

hep-ex/0703016 Submitted to PRL

BACKUP

Muriel Pivk, François Le Diberder

sPlots

- Statistical tool allowing the distribution of a variable (*x*) for a given fitted species (*n*) to be computed from the other variable PDFs
- An sWeight is assigned to each event e:

$${}_{s}W_{n}(\vec{y}_{\text{event e}}) = \frac{\sum_{j=1}^{N_{s} \text{ species}} \text{Cov}_{nj} f_{j}(\vec{y}_{\text{event e}})}{\sum_{k=1}^{N_{s} \text{ species}} N_{k} f_{k}(\vec{y}_{\text{event e}})}$$

with N_S species, the f_js being the PDFs from the fit w/o x and the \vec{y} vector containing the values of the other variables for the event

- sWeights verify $\sum_{\text{events e}} W_n(\vec{y}_{\text{event e}}) = N_n$ with N_n the number of events in species n
- The histogram of the variable *x* for species *n* weighted by the corresponding sWeights provides an estimation of the distribution for this variable.

Common Analysis Techniques

- Discrimination variables
 - ✓ Energy-substituted mass $|\mathbf{m}_{ES}| = \sqrt{E_{beam}^{*2} p_{B}^{*2}}$
 - ✓ Energy difference $\Delta E = E_B^* E_{beam}^*$
- mass $m_{ES} = \sqrt{E_{beam}^{*2}}$ $\Delta E = E_{B}^{*} - E_{beam}^{*}$
 - ✓ Event shape $* = e^+e^- CM$ frame → $q\overline{q}$ (q={u, d, s, c}) dominant background → cuts + Fisher/NN for further discrimination
- PID by combining info from SVT, DCH and DRC
- EMC used for neutral particles and electrons

7 mutually exclusive and complete tagging categories

The BABAR detector

Performances

As of 2007/07/18 00:00

