

- Introduction
- CP violation at B-factories
- $\beta(\phi_1)$ measurements
 - Sin(2 β) measurements
 - charmonium K
 - D⁰h⁰, D⁰→CP-eigenstate
 - D^{(*)+}D⁻
 - Cos(2 β) measurements
- Conclusions

Introduction

- CPV in neutral B mesons can be tested via their decay to CP-eigenstates
- A B⁰ that mixes into a $\overline{B^0}$ "gains" a 2 β phase

 $\Delta m \equiv mixing frequency$

• The interference between mixing and decay produces the CP asymmetry

PEP-II B-factory and *BaBar* experiment

CPV at B-factories

Sin(2β) measurements

- Golden modes:
 - 1. Small SM uncertainties: tree and penguin diagrams have same weak phase $\overline{\overline{c}}$

Model-independent data-driven calculation, using SU(3)-related process $B^0 \rightarrow J/\psi \pi^0$

- $\Delta S_{J/\psi Ks} = (0.000 \pm 0.012)$ [Ciuchini et al., PRL 95, 221804 (2005)]
- $\Delta S_{J/\psi Ks} = (9.3 + 3.6_{-4.6}) \cdot 10^{-4}$ [Li and Mishima, hep-ph/0610120]

Factorization + NPQCD

- 2. Relatively large Branching Fractions $B \rightarrow J/\psi K^{0} \sim 8.5 \times 10^{-4}$ $B \rightarrow \psi (2S) K^{0} \sim 6.2 \times 10^{-4}$ $B \rightarrow \chi_{c1} K^{0} \sim 4 \times 10^{-4}$ $B \rightarrow \eta_{c} K^{0} \sim 1.2 \times 10^{-3}$
- 3. Clear experimental signature

 $B^0 \rightarrow J/\psi \, K_S, \ J/\psi \rightarrow \ell^+ \ell^-, \ K_S \rightarrow \pi^+ \pi^-$

Charmonium K⁰: samples

B_{CP} sample

- $B \rightarrow J/\psi K^0$
 - $J/\psi \rightarrow e \ e, \ \mu \ \mu$
 - $K_s^0 \rightarrow \pi \pi$
 - K_L^0 : cluster
- $B \rightarrow \psi(2S) K_S^0$
 - $\psi(2S) \rightarrow e \ e, \ \mu \ \mu, \ J/\psi \ \gamma$
- $B \rightarrow \chi_{c1} K_S^0$
 - $\chi_{c1} \rightarrow J/\psi \gamma$
 - $B \rightarrow \eta_c K_S^0$ $\eta_c \rightarrow K^0 K^+ \pi^-$
- $B \rightarrow J/\psi K^{*0}$
 - $K^{*0} \rightarrow K_S^0 \pi^0$

Charmonium K⁰: results

Charmonium K⁰: comparison

$B^0 \rightarrow D^{(*)0}h^0, D^0 \rightarrow CP$

 B^0

Standard Model

 λ''_{ubs}

 \widetilde{S}_R

R-SUSY

- $B^0 \rightarrow D^{(*)0}h^0$ are color suppressed $b \rightarrow c\bar{u}d$ transitions
 - h⁰ is a light meson (such as π^0 , η or ω)
 - 1. No penguin contribution
 - 2. Small SM uncertainty (DCS process $b \rightarrow u\overline{c}d$)
 - 3. Potential large New Physics contribution

$$- \Delta\beta = (\beta_{\text{eff}} - \beta) < 0.5$$

• Y. Grossman and M. Worah, Phys. Lett. B 395, 241 (1997)

We can measure sin(2β) by reconstructing D⁰ in a CP-eigenstate

$B^0 \rightarrow D^{(*)0}h^0$, $D^0 \rightarrow CP$: results

 $B^0 \rightarrow D^{(*)} - D^+$

• Competition between tree and penguin diagrams

- Expected small penguin contribution: 2-10%
 - Z.-Z. Xing, Phys. Rev. D 61, 014010 (2000)
- β_{eff} is sensitive to New Physics in loops
 - $\Delta\beta = (\beta_{eff} \beta)$ up to 0.6 in some SUSY models

• Y. Grossman and M. Worah, Phys. Lett. B 395, 241 (1997)

$B^0 \rightarrow D^-D^+$: *BaBar* results

B⁰→D⁻D⁺: comparison

- It is not a CP-eigenstate
 - We define a time integrated CP-asymmetry:

$$\mathcal{A}_{D^{*\pm}D^{\mp}} = \frac{N_{D^{*+}D^{-}} - N_{D^{*-}D^{+}}}{N_{D^{*+}D^{-}} + N_{D^{*-}D^{+}}}$$

• However, we can extract information for $sin(2\beta_{eff})$:

$$S_{D^* \pm D^{\mp}} = -\sqrt{1 - C_{D^* \pm D^{\mp}}^2} \sin(2\beta_{\text{eff}} \pm \delta)$$

Strong-phase difference

- If penguin contribution is zero: $C_{-+} = -C_{+-} \& \beta_{eff} = \beta$
- If there's no CP violation: $S_{-+} = -S_{+-} \Leftrightarrow sin(2\beta) = 0$

$B^0 \rightarrow D^{*-}D^+$: results

$B^0 \rightarrow D^* D^+$: comparison

Good agreement

Cos(2β) measurements

Resolve ambiguity in β (I)

- Sin2 β has 4-fold ambiguity in β , reduced using the sign of cos2 β .
- Negative $\cos 2\beta$ is ruled out by:
 - B⁰→J/ψ Kπ : Interference between CP even and odd; resolve strong phase using Kπ S- and P-wave.
 - BABAR [PRD 71, 032005 (2005)]
 - $B^0 \rightarrow D^0[K_S \pi^+\pi^-] h^0$: Time-dependent Dalitz analysis
 - BABAR [hep-ex/0607105] 87% CL.
 - $B^0 \rightarrow D^*D^*K_s$: Time-dependent Dalitz analysis
 - BABAR [PRD 74, 091101 (2006)] 94% CL.

Resolve ambiguity in β (II)

M. Bomben - beta measurement at Babar - HEP 2007

Conclusions

Conclusions

- $\beta(\phi_1)$ measurement has reached the 4% precision level
- Many different decays have been used
- A very large quantity of data has been analyzed
- BaBar has been giving (and will continue to give) an important contribution to probe flavor sector of Standard Model

$$\beta$$
 = (21.3 ± 1.0)°

(World Average)

That's it!

Backup slides

A successful B-factory!

$B^0 \rightarrow D^{(*)0}h^0$, $D^0 \rightarrow CP$: merged

$B^0 \rightarrow D^-D^+$: further comparison

M. Bomben - beta measurement at Babar - HEP 2007

$B^0 \rightarrow D^-D^+$: Δt distributions

$B^0 \rightarrow D^{(*)} - D^+$: systematics

Source	$C_{D^{*+}D^{-}}$	$S_{D^{*+}D^{-}}$	$C_{D^{*-}D^+}$	$S_{D^{*-}D^+}$	C_{D+D-}	S_{D+D} -
Peaking backgrounds	0.026	0.041	0.027	0.031	0.044	0.042
Δt resolution parameterization	0.011	0.021	0.013	0.012	0.015	0.020
Mistag fraction differences	0.014	0.011	0.016	0.012	0.023	0.013
Beam-spot position	0.004	0.006	0.007	0.036	0.005	0.002
$\Delta m_d, \tau_B$	0.002	0.003	0.003	0.004	0.001	0.004
MC statistics	0.011	0.015	0.011	0.015	0.036	0.023
Tag-side interference and others	0.016	0.025	0.017	0.020	0.020	0.013
Total	0.037	0.056	0.040	0.056	0.066	0.055

B⁰→D^{(*)0}h⁰, D⁰→K_sππ comp.

- Belle determine the sign of $cos(2\beta)$ to be positive at 98.3% confidence level
- Babar determine the sign of $cos(2\beta)$ to be positive at 87% confidence level

World average

