

Measurements of $\phi_2(\alpha)$ and $\phi_3(\gamma)$ at Belle

Atsuko Kibayashi (KEK) For the Belle Collaboration EPS2007 March 19-25, Manchester

Outline

- Introduction
- $\phi_2(\alpha)$ Measurements
 - $B \rightarrow \pi \pi$
 - $B \rightarrow \rho \rho$
 - $B \rightarrow \rho \pi$
 - B → a₁π (B.R.)
- $\phi_3(\gamma)$ Measurements
 - the GLW method: $B^{\pm} \rightarrow D_{CP}^{(*)}K^{\pm}$
 - − the ADS method: $B^{\pm} \rightarrow [K^{\mp} \pi^{\pm}]_{D} K$
 - Dalitz plot analysis: $B^{\pm} \rightarrow D^{(*)}K^{(*)\pm}$, $D^{0} \rightarrow K_{s}\pi^{+}\pi^{-}$
 - − time-dependent CPV: $B^0 \rightarrow D^{(*)-}\pi^+$
- Summary

Introduction **Unitarity Triangle** Unitarity of the CKM matrix $\rightarrow V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Introduction Belle & KEKB

PRL 98, 211801 (2007)

\frown
BELLE
$535MB\overline{B}$

$\phi_2(\alpha)$ Measurement PRD76, 011104(R) (2007) $B \rightarrow \rho \rho$ $A_{oo} = +0.16 \pm 0.21(stat) \pm 0.07(syst)$ $S_{oo} = +0.19 \pm 0.30(stat) \pm 0.07(syst)$ **q=-1** Isospin relation WA BR($\rho^+\rho^-$), BR($\rho^+\rho^0$), BR($\rho^0\rho^0$) $A_{cp}(\rho^0\rho^0)$

б

 Δt (ps)

 $B.R.(B^{0} \to a_{1}^{\pm}\pi^{\mp})B.R.(a_{1} \to \pi^{\pm}\pi^{\pm}\pi^{\mp})$ $= (14.9 \pm 1.6 \pm 2.3) \times 10^{-6}$

Gronau, Zupan PRD 73, 057502(2006)

$\phi_3(\gamma)$ Measurements

GLW method

PRD73, 051106 (R)(2006)

Gronau, London (1991) Gronau, Wyler (1990)

$$\mathcal{A}_{1,2} \equiv \frac{\mathcal{B}(B^- \to D_{1,2}K^-) - \mathcal{B}(B^+ \to D_{1,2}K^+)}{\mathcal{B}(B^- \to D_{1,2}K^-) + \mathcal{B}(B^+ \to D_{1,2}K^+)}$$
$$= \frac{2r\sin\delta'\sin\phi_3}{1 + r^2 + 2r\cos\delta'\cos\phi_3}$$

B→D_{1,2}K

$$A_1 = +0.06 \pm 0.14(stat) \pm 0.05(syst)$$

 $A_2 = -0.12 \pm 0.14(stat) \pm 0.05(syst)$

B→D^{*}_{1,2}K

$$A^{*}_{1} = -0.20 \pm 0.22(stat) \pm 0.04(syst)$$

 $A^{*}_{2} = +0.13 \pm 0.30(stat) \pm 0.08(syst)$

• Weak constraint on $\phi 3$

B

CP-even: $D_1 = K^+K^-, \pi^+\pi^-$

CP-odd: D₂=K_S π^0 , K_S ω , K_S ϕ

$\phi_3(\gamma)$ Measurements

ADS method

hep-ex/0508048

Atwood, Danietz, Soni (1997)

CP violation effects enhanced, when the interfering amplitudes are comparable.

$$\begin{split} &\phi_{3} = 53^{\circ}_{-18^{\circ}} (\text{stat.}) \pm 3^{\circ} (\text{syst.}) \pm 9^{\circ} (\text{model}) \\ &\phi_{3} = 63^{\circ}_{-18^{\circ}} (\text{stat.}) \pm 3^{\circ} (\text{syst.}) \pm 9^{\circ} (\text{model}) \\ &r_{B} = 0.16^{+0.05}_{-0.05} (\text{stat.}) \pm 0.01 (\text{syst.}) \pm 0.05 (\text{model}) \\ &= f(m_{+}^{2}, m_{\pm}^{2}) + re^{i\delta \pm i\phi_{3}} f(m_{\pm}^{2}, m_{\pm}^{2}) \end{split}$$

$\phi_3(\gamma)$ Measurements

tCPV method

Results CKM fit

Summary

- $\phi_2(\alpha)$ measurement
 - $B \rightarrow \pi\pi$ (97 ± 11) °
 - B→ρρ (61 107) °
 - B→ρπ (68 95) °
 - $B \rightarrow a_1 \pi \ B.R.(B^0 \rightarrow a_1^{\pm} \pi^{\mp}) B.R.(a_1 \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\mp}) = (14.9 \pm 1.6 \pm 2.3) \times 10^{-6}$
- ϕ_3 (γ) measurement
 - GLW method: weak constraint on φ_3
 - ADS methods: r_R<0.18 (90%CL)
 - **Dalitz**: $\phi_3 = (53^{+15}_{-18} \pm 3 \pm 9)^\circ, r_B = 0.16^{+0.05}_{-0.05} (\text{stat.}) \pm 0.01 (\text{syst.}) \pm 0.05 (\text{model})$
 - tCPV: constraint on $|sin(2\phi_1 + \phi_3)|$

Backups

isospin analysis

