

EPS 2007, J. Sekaric

- Motivation for studying Diboson Physics
- Recent DØ results related to Diboson production (cross section measurements, tri-linear coupling limits):
 - γ**W**, γ**Z**
 - ZZ, WZ
- Data (0.8 1.0) fb⁻¹ from Tevatron Collider
- Up to now, analyzed final states are leptonic (ZZ, WZ) or leptonic with associated photon (γW, γZ)

Test the Standard Model (SM) expectations Search for *New Physics* (EWSB mechanism)

- **1. Cross section measurements**
- 2. Trilinear gauge boson coupling (TGC) measurements

Disagreement with the SM expectation (event yield or TGC value) would indicate the presence of *New Physics*

W,Z,y

J. Ellison, J. Wudka hep-ph/9804322v2

Deviation from the SM can be described via effective Lagrangian

Charged TGCs (WZ, WW, Wγ production) *Neutral* TGCs (Zγ, ZZ production)

 $W\gamma$, WW, WZ: **SM Deviations :** Z*/γ*/W* (WWZ and WWy SM vertices) $\Delta g_1^Z = g_1^Z - 1$ $\Delta \kappa_{\gamma,Z} = \kappa_{\gamma,Z} - 1$ SM: $g_1^{\gamma} = \kappa_{\gamma,Z} = 1; \quad \lambda_{\gamma,Z} = 0;$ $\Delta \lambda_{\gamma,Z} = \lambda_{\gamma,Z} - 0$ Z^*/γ^* $Z\gamma$: ($Z\gamma\gamma$ and $ZZ\gamma$ non-SM vertices) **SM Deviations :** SM: $h_3^{\gamma,Z} = h_4^{\gamma,Z} = 0;$ ZZ: (ZZZ and Z γ Z non-SM vertices) $\Delta h_{3,4}^{\gamma,Z} = h_{3,4}^{\gamma,Z} - 0 \quad \overline{q}$ Not allowed in the SM SM: $f_{A}^{\gamma,Z} = f_{5}^{\gamma,Z} = 0;$ \mathbf{Z}^*/γ^* $\alpha_i^{\gamma,Z} = \frac{\alpha_{i0}^{\gamma,Z}}{\left(1 + \hat{s}/\Lambda^2\right)^n}$ 4.Z Not allowed $\Delta \neq 0 \Rightarrow$ Anomalous TGCs in the SM EPS 2007, J. Sekaric 4

- Only s-channel contains TGC (WWy vertex)
- WW γ (g_1^{γ} , κ_{γ} , λ_{γ}) couplings independent of WWZ
- Anomalous TGC cause a deviation from the SM cross section:

→ Reflected in the photon energy spectrum

• Interference among tree-level diagrams creates a zero in distribution of $\theta_{\rm CM}$ between W boson and incoming quark; (location of zero depends on quark (i.e. W) charge)

$$\rightarrow \gamma W^{\pm}$$
 amplitude goes to zero for $\cos \theta_{CM} = \mp \frac{1}{3}$
Radiation Amplitude Zero (RAZ)

Analyzed final states: $e\gamma$, $\mu\gamma$ (≈ 0.9 fb⁻¹)

Photon requirements:

 $|\eta_{\gamma}| < 1.1 \text{ or } 1.5 < |\eta_{\gamma}| < 2.5; E_T^{\gamma} > 7 \text{ GeV}$ To suppress $W \rightarrow Iv\gamma$: $dR_{I\gamma} > 0.7; M_T^{I\gamma MET} > 110 \text{ GeV};$ <u>Muon requirements:</u> $|\eta_{u}| < 2; E_T > 20 \text{ GeV}; E_T > 20 \text{ GeV};$

Electron requirements:

 $\begin{aligned} &|\eta_{\gamma}| < 1.1 \text{ or } 1.5 < |\eta_{\gamma}| < 2.5; \ E_{T}^{\gamma} > 7 \text{ GeV}; \ &|\eta_{e}| < 1.1 \text{ or } 1.5 < |\eta_{e}| < 2.5; \ E_{T} > 25 \text{ GeV}; \\ & \mathcal{E}_{T} > 25 \text{ GeV}; \ &M_{T}^{W} > 50 \text{ GeV}; \end{aligned}$

Dominant background: W + jets

- 634 candidate events
- After background subtraction:
 - (335 ± 44) signal events observed

Measured cross sections:

$$\begin{split} \sigma_{W\gamma \rightarrow \mu\nu\gamma} &= 3.2 \pm 0.5 \pm 0.2 \ pb \\ \sigma_{W\gamma \rightarrow e\nu\gamma} &= 3.1 \pm 0.5 \pm 0.2 \ pb \end{split}$$

SM NLO: $\sigma_{I\nu\gamma} = 3.21 \pm 0.08 \text{ pb}$ ($E_T^{\gamma} > 7 \text{ GeV}; dR_{I\gamma} > 0.7;$ $M_T^{I\gamma MET} > 90 \text{ GeV}$)

6

Radiation Amplitude Zero in W_{\gamma}

 Wide η coverage essential as well as good signal to background separation and rapidity resolution

> Charge-signed rapidity distribution is consistent with the SM

RAZ evident as a dip around
-0.3 (rapidity difference signed by the lepton charge)

 $sign(l) \times [y(\gamma) - y(l)] \approx -0.3$

• NLO corrections, FSR and backgrounds obscure the dip

EPS 2007, J. Sekaric

- Tree-level SM: no $\gamma\gamma Z$, ZZ γ vertices (one-loop SM: $h_{3,4}^{\gamma,Z} \approx 10^{-4}$)
- New Physics predicts the anomalous TGCs:

→ Reflected in the photon energy spectrum

• Analyzed final states: $ee\gamma$, $\mu\mu\gamma$ (≈ 1 fb⁻¹)

$$\begin{split} & \underline{\textit{Photon requirements:}} \\ & |\eta_{\gamma}| < 1.1; \ E_{T}{}^{\gamma} > 7 \ GeV; \ dR_{l\gamma} > 0.7; \\ & \underline{\textit{Muon requirements:}} \\ & |\eta_{\mu}| < 2; \ p_{T}{}^{(1)} > 20 \ GeV; \ p_{T}{}^{(2)} > 15 \ GeV; \\ & \underline{\textit{Common cuts:}} \ M_{ll} > 30 \ GeV; \end{split}$$

Electron requirements:

$$\begin{split} |\eta_{e}| &< 1.1 \text{ (at least one) and } 1.5 < |\eta_{e}| < 2.5; \\ p_{T}{}^{(1)} &> 25 \text{ GeV}; \ p_{T}{}^{(2)} > 15 \text{ GeV}; \end{split}$$

Dominant background: Z + jets (misidentification of photon) EPS 2007, J. Sekaric

Photon candidate E_T spectrum: comparison with the expected distributions (MC) in the presence of anomalous $ZZ\gamma/\gamma\gamma Z$ couplings

95% C.L.	$h^{\gamma} (h^{\mathrm{Z}} = 0)$	h^{Z} $(h^{\gamma}=0)$	Tightest $h_{40}^{\gamma,Z}$
$h_{30,40}^{\gamma,Z}$ limits	$-0.085 < h_{30} < 0.084$	$-0.083 < h_{30} < 0.082$	limits to date!
$(h_{10,20}^{\gamma,Z}=0):$	$-0.0053 < h_{40} < 0.0054$	$-0.0053 < h_{40} < 0.0054$	
EPS 2007, J. Sekaric			9

ZZ Production

- Only *s* channel contains Z/γZZ vertex
- SM NLO: $\sigma_{ZZ} = 1.6 \pm 0.1 \text{ pb}$

J.M. Campbell, R.K. Ellis, Phys. Rev. D60 (1999)

- Up to recently not observed at a hadron collider
- Tree-level SM: no ZZZ or γ ZZ vertices (one-loop SM: $f_{4,5}^{\gamma,Z} \approx 10^{-4}$)
- Analyzed final states: eeee , $\mu\mu\mu\mu$, $\mu\mu ee$, ($\approx 1 \text{ fb}^{-1}$)
- Analysis depends on optimizing the single lepton cuts

```
\begin{array}{ll} \underline{Muon\ requirements:} & \underline{Electron\ requirements:} \\ |\eta_{\mu}| < 2;\ p_{T} > 15\ GeV;\ \cos\alpha < 0.96; & |\eta_{e}| < 1.1\ or\ 1.5 < |\eta_{e}| < 3.2;\ E_{T} > 15\ GeV; \\ |\Delta z_{vtx}| < 3\ cm; & \end{array}
```

Common cuts:
$$dR_{e\mu} > 0.2; M_{II} > 30 \text{ GeV};$$

ZZ Production

WZ Production

- Only *s* channel contains TGC (WWZ vertex)
- WWZ couplings $(g_1^Z, \kappa_Z, \lambda_Z)$ independent of WW γ
- Analyzed final states: $ee\mu$, $\mu\mu e$, eee, $\mu\mu\mu$ (≈ 1 fb⁻¹)
- Analysis dependent on single lepton cuts

Muon: **Electron requirements:** $|\eta_u| < 2$; $E_T > 20$ GeV; $E_T > 15$ GeV; $|\eta_e| < 1.1$ or $1.5 < |\eta_e| < 2.5$; $E_T > 20$ GeV; $E_{T} > 15 \text{ GeV};$

<u>Common cuts</u>: $dR_{\parallel} > 0.2$; $M_{\parallel} = (51-131)/(71-111)$ GeV; $\Sigma_{vector}(E_T + E_T) < 50$ GeV; Dominant backgrounds: $Z(\rightarrow ee) + jets (eee); ZZ (ee\mu);$ $Z(\rightarrow \mu\mu)$ + jets ($\mu\mu e$); ZZ ($\mu\mu\mu$); EPS 2007, J. Sekaric

WZ Production

Channel	Background	Signal	Ν
eee	0.960 ± 0.069	1.83 ± 0.35	2
ееµ	0.485 ± 0.053	1.84 ± 0.52	1
μμе	0.963 ± 0.080	1.80 ± 0.63	7
μμμ	1.203 ± 0.143	2.07 ± 0.56	2
Total	3.61 ± 0.20	7.54 ± 1.21	12

• 12 candidate events

• 3.6 ± 0.2 background estimated $(P_{\text{fluctuation}} = 4.2 \cdot 10^{-4})$ \rightarrow 3.3 σ significance

Cross section is calculated by combining likelihoods ($f(\sigma)$) for each channel \rightarrow

 $\sigma_{\rm WZ} = 3.98^{+1.91}_{-1.53} \rm pb$

WZ Candidate Dilepton Invariant Mass

Diboson production cross sections consistent with the NLO SM **D** Best limits on h_{40} in Zy to date **Charge signed rapidity difference in Wy is in** agreement with the SM Evidence of WZ production at DØ □ New results (Wy, WZ, ZZ, WW) with more data are on the way! $(L \approx 2.64 \text{ fb}^{-1} \text{ on June } 24^{\text{th}}, 07)$