Hadronic **B** Decays at **BABAR**

Silvano Tosi

Università & INFN Genova, on behalf of the BABAR Collaboration

Summary

- A selection of recent results from BABAR
 - $\quad B \to \phi \, K^*$
 - $B \rightarrow p \,\overline{p} \, h$
 - $B \rightarrow \eta_c K^*$, $\eta_c \gamma K^{(*)}$
- All results are preliminary.

More hadronic B-decay results from BABAR in the other BABAR talks.

Amplitude Analysis of $B \rightarrow \phi K^*$

 $384 \times 10^6 B\overline{B}$ pairs

• Full amplitude analysis of $B \rightarrow \phi K^*$ decays:

- test of SM expectations.

arXiv:0705.0398 [hep-ex], submitted to Phys. Rev. D arXiv:0705.1798 [hep-ex], submitted to Phys. Rev. Lett.

 Expectation from weak interaction V–A structure, helicity conservation and squark spin filp suppression in penguin decays: $|A_0|^2 >> |A_+|^2 >> |A_-|^2$

• Reconstruction and selection of $B^{\pm} \rightarrow \phi K^{*\pm}$ candidates:

 $K^{\pm} \rightarrow K^{\pm} \pi^0, \ K_{\rm s} \pi^{\pm}; \ \phi \rightarrow K^+ K^-$

$$\Delta E = (E_Y E_B - \mathbf{p}_Y \mathbf{p}_B - s/2) / \sqrt{s}$$
$$m_{ES} = [(s/2 + \mathbf{p}_Y \mathbf{p}_B)^2 / E_Y^2 - \mathbf{p}_B^2]^{1/2}$$

$$N(\phi K^{*\pm} \to K^+ K^- \pi^{\pm} K_s) = 102 \pm 13 \pm 6$$
$$N(\phi K^{*\pm} \to K^+ K^- K^{\pm} \pi^0) = 117 \stackrel{^{+15}}{_{-16}} \pm 7$$

• Measurement of 12 polarization-related quantities. Also allowed for CP violation (6 quantities):

$$- f_{L} = |A_{0}|^{2} / \Sigma |A_{\lambda}|^{2} = 0.49 \pm 0.05 \pm 0.03 \implies |A_{0}|^{2} \sim |A_{+}|^{2} + |A_{-}|^{2}$$

$$- f_{\perp} = |A_{\perp}|^{2} / \Sigma |A_{\lambda}|^{2} = 0.21 \pm 0.05 \pm 0.03$$

$$- \phi_{||} - \pi = \arg(A_{||} / A_{0}) - \pi = -0.67 \pm 0.20 \pm 0.07 \text{ rad}$$

$$- \phi_{\perp} - \pi = \arg(A_{\perp} / A_{0}) - \pi = -0.45 \pm 0.20 \pm 0.03 \text{ rad}$$

$$- \text{No evidence of CP violation.}$$

• Two possible solutions would be equally plausible:

$$\mathsf{I}) \quad \varphi_{\!\!\perp} \cong \varphi_{||} - \pi \quad \mathsf{A}_{\!\!\perp} \cong - \mathsf{A}_{||} \quad |\mathsf{A}_{\!\!+}|^2 << |\mathsf{A}_{\!\!-}|^2$$

 $\text{II}) \quad \varphi_{\!\!\perp} \hspace{-0.5mm} \cong \varphi_{||} \qquad \mathsf{A}_{\!\!\perp} \hspace{-0.5mm} \cong \mathsf{A}_{||} \qquad |\mathsf{A}_{\!\!+}|^2 >> |\mathsf{A}_{\!\!-}|^2$

- To solve the ambiguity we can use interference between P-wave K*(892) and S-wave $\left(\text{K}\pi\right)^*{}_0$

- the fit finds $N(\phi(K\pi)_0^{*\pm}) = 57_{-13}^{+14}$

 \rightarrow Only solution II is acceptable! $|A_+|^2 >> |A_-|^2 \rightarrow |A_0|^2 \sim |A_+|^2$

• Study of $B \rightarrow \phi(K\pi)$ decays with large $K\pi$ invariant mass.

• Vector – Tensor: $|A_0| >> |A_{\pm}|$

To be understood why different from Vector – Vector case.

JP	<i>B</i> decay	<i>BR</i> (× 10 ⁶)	fL
0+	<i>φ</i> K* ₀ (1430) ⁰	$4.6 \pm 0.7 \pm 0.6$	
1-	<i>φ</i> K*(892) ⁰	9.2 ± 0.7± 0.6	0.51 ± 0.04± 0.02
1-	<i>φ</i> K*(892)+	11.2 ± 1.0± 0.9	$0.49 \pm 0.05 \pm 0.03$
1-	$\phi K^* (1680)^0$	< 3.5, 90 % C.L.	
2+	<i>φ</i> K* ₂ (1430) ⁰	7.8 ± 1.1± 0.6	$0.85 \begin{array}{c} ^{+0.06}_{-0.07} \pm 0.04 \end{array}$
3-	<i>φ</i> K* ₃ (1780) ⁰	< 2.7, 90 % C.L.	
4+	$\phi K_{4}^{*}(2045)^{0}$	< 15.3, 90 % C.L.	

Also: $BR(B^0 \to \phi \overline{D^0}) < 11.6 \times 10^{-6}, 90 \%$ C.L.

- Possible explanations of the excess of A₊ within SM:
 - annihilation mechanism

e.g. Phys. Lett. B 601, 151

- QCD rescattering
 - e.g. Phys. Rev. D 70, 054015
- others....

• Explanations outside SM?

- scalar interaction ? current $\overline{q(1+\gamma^5)}q$

- supersymmetry ? current $\overline{q\gamma}^{\mu}(1+\gamma^5)q$
- others ??

Study of $B \rightarrow p \overline{p} h$ Decays

 $232 \times 10^6 B\overline{B}$ pairs

arXiv:0707.1648 [hep-ex], submitted to Phys. Rev. D

- Study of $B^0 \rightarrow p\overline{p}K_s$, $p\overline{p}K^{*0}$ and $B^+ \rightarrow p\overline{p}\pi^+$, $p\overline{p}K^{*+}$:
 - $B^+ \rightarrow p\bar{p}K^+$ already published in Phys. Rev. D72, 051101.
 - 3-body decay: dominant diagrams:
 - $B^+ \rightarrow p\bar{p}\pi^+$: external and internal W-emission tree diagram;
 - $B^0 \rightarrow p\bar{p}K^{(*)0}$: virtual loop penguin process $b \rightarrow sg$;
 - $B^+ \rightarrow p\bar{p}K^{(*)+}$: penguin and doubly CKM suppressed W-emission tree.
 - CP violation studies
 - Direct CP violation: different weak and strong phases between tree and penguin diagrams
 - 20% asymmetry foreseen in $B^+ \rightarrow p p K^{*+}$ (Phys. Rev. Lett. 98, 011801).

- Other interesting results from $B \rightarrow p\overline{ph}$ decays: 2-body and quasi-2-body decays
 - Search for $B^0 \to \Theta^+(1540) \ \overline{p}, \ \Theta^+(1540) \to p \ K_s$.
 - Pentaquark candidate seen by several experiments
 - Search for $B \rightarrow f_J(2220) h$, $f_J(2220) \rightarrow p \overline{p}$.
 - Glueball candidate seen in $K\overline{K}$ by MarkIII and in $K\overline{K}$, $\pi\pi$, $p\overline{p}$ by BES.
 - Study of low $p\overline{p}$ mass enhancement:
 - observed in *B* (Belle, CLEO, *BABAR*) and J/ψ decays (BES), also in modes other than $p\overline{p}$;
 - short-range correlation between p and \overline{p} ?
 - maybe the *X*(*1835*) observed by BES?
 - Study of $B \to \eta_c h$ and $B^0 \to \Lambda^+_c \overline{p}$.

• Results and comparison with Belle and with mesonic *B* decays. $BR \times 10^6$:

h	BaBar B <i>→</i> pph	Belle <i>B</i> → <i>pph</i> PRL92,131801 arXiv:0705.0398 [hep-ex]	$B \rightarrow \pi^0 h$ PDG 2007	$B \rightarrow \rho^0 h$ PDG 2007
K⁺	$6.7 \pm 0.5 \pm 0.4$ PRD72,051101	5.98 $^{+0.29}_{-0.27} \pm 0.39$	12.1 ± 0.8	5.0 ^{+0.7} _{-0.8}
K ^o	$3.0 \pm 0.5 \pm 0.3$	$2.40 + 0.64 \\ -0.44 \pm 0.28$	11.5 ± 1.0	5.4 ^{+0.9} _1.0
K*+	5.3 ± 1.5 ± 1.3	10.3 ^{+3.6} ^{+1.3} -2.8 -1.7	6.9 ± 2.4	11.0 ± 4.0
K*0	$\begin{array}{r} 1.5 \pm 0.5 \pm 0.4 \\ \textbf{First evidence} \end{array}$	< 7.6, 90 % C.L.	< 3.5, 90 % C.L.	5.6 ± 1.6
π^+	$1.7 \pm 0.3 \pm 0.3$	$1.68 + 0.26 \\ -0.22 \pm 0.12$	5.5 ± 0.6	8.7 ± 1.1

• From isospin symmetry one expects $BR(B^+ \rightarrow p\bar{p}K^+) / BR(B^0 \rightarrow p\bar{p}K^0) \sim 1$ (as for the mesonic decays).

– The observed ratio is ~ 2: is this due to the absense of the tree diagram for $p\bar{p}K^0$? Then why $BR(B^+ \rightarrow p\bar{p}\pi^+)$ is that smaller?

- $BR(B^+ \rightarrow p\bar{p}K^{*+})$ larger than $BR(B^0 \rightarrow p\bar{p}K^{*0})$, similarly to the mesonic cases.
- $BR(B \rightarrow p\bar{p}K^*)$ smaller than $BR(B \rightarrow p\bar{p}K)$, similarly to $\pi^0 h$ but not $\rho^0 h$.

• Results for charmonium modes. All consistent with PDG

$$- \frac{\text{First evidence of } B^+ \rightarrow \eta_c \ K^{*+}}{\text{First evidence of } B^+ \rightarrow \eta_c \ K^{*+}} \times BR(\eta_c \rightarrow p\overline{p}) = (1.57^{+0.56}_{-0.45} \ -0.36}_{-0.45}) \times 10^{-6}$$

• Result for $\Lambda_c^+ \overline{p}$. Consistent with Belle measurement:

$$-\frac{BR(B^{0} \rightarrow \Lambda^{+}_{c} \overline{p}) = (21.0 \stackrel{+6.7}{_{-5.5}}\text{stat} \stackrel{+6.7}{_{-6.2}}\text{syst} \stackrel{+2.1}{_{-1.7}} \text{br}_{1} \stackrel{+7.4}{_{-4.3}} \text{br}_{2}) \times 10^{-6}}{\underline{BR(\Lambda^{+}_{c} \rightarrow pK^{(*)})}} BR(\Lambda^{+}_{c} \rightarrow pK_{s}\pi) BR(\Lambda^{+}_{c} \rightarrow pK_{s}\pi)$$
• Results for search for $\Theta^{+}(1540)$:

- No evidence: $BR(B^0 \rightarrow \Theta^+(1540) \overline{p}) < 9.2 \times 10^{-7}$, 90% C.L., assuming $BR(\Theta^+ \rightarrow pK_s)=0.25$.

• Results for search for $f_J(2220)$:

– No evidence. Assuming $\Gamma(f_J(2220)) < 30$ MeV:

 $-\frac{BR(B^0 \to f_j(2220) \ K^0) \times BR(f_j(2220) \to p\bar{p}) < 4.5 \times 10^{-7}, 90\% \text{ C.L.}$

 $-\frac{BR(B^0 \to f_J(2220) \ K^{*0}) \times BR(f_J(2220) \to p\bar{p}) < 1.5 \times 10^{-7}, \ 90\% \ C.L.$

 $-BR(B^+ \rightarrow f_J(2220) K^{*+}) \times BR(f_J(2220) \rightarrow p\bar{p}) < 7.7 \times 10^{-7}, 90\%$ C.L.

• Result for search for direct CP violation:

- All CP-violating charge asymmetry measurements are consistent with 0.

B Decays to $\eta_c K^*$ and $\eta_c \gamma K^{(*)}$

 $384 \times 10^6 B\overline{B}$ pairs

arXiv:0707.2843 [hep-ex]

- *B* decays to singlet states of charmonium are still more poorly known wrt *B* decays to triplet states.
- Here focus on $B^0 \to \eta_c K^{*0}$, $B^+ \to h_c K^+$ and $B^0 \to h_c K^{*0}$ with $h_c \to \eta_c \gamma$ and $\eta_c \to K_s(\pi^+\pi^-)K^+\pi^-$ and $K^+K^-\pi^0$.

• *B* decays to P-wave states (χ_c and h_c) foreseen in NR-QCD (PRD 51, 1125) to occur all at similar rates:

 $-B \rightarrow \chi_{c1} K(*)$ and $B \rightarrow \chi_{c0} K$ indeed observed with $BR \sim 10^{-4}$.

- Current limits on $B^{0,+} \rightarrow \chi_{c2} K(^*)$ and $B^+ \rightarrow h_c K^+$ are much smaller (few 10⁻⁵): why?

• h_c recently discovered by CLEO (PRD 72, 092004) and confirmed by E835 (PRD 72, 032001).

• To suppress most uncertainties, we reconstruct also $B^+ \rightarrow \eta_c K^+$ and measure ratios of branching fractions with respect to it.

• m($K\overline{K}\pi(\gamma)$) spectra after subtraction of background from m_{FS} sideband.

• Clear signal for $\eta_c K^{*0}$:

 $-BR(B^0 \rightarrow \eta_c K^{*0}) = (6.1 \pm 0.8 \pm 1.1) \times 10^{-4}$; improved precision over world average by a factor 2.

• No evidence for $h_c K^{(*)}$:

 $-BR(B^+ \rightarrow h_c K^+) \times BR(h_c \rightarrow \eta_c \gamma) < 5.2 \times 10^{-5}$, 90% C.L., consistent with Belle limit.

 $-BR(B^0 \rightarrow h_c K^{*0}) \times BR(h_c \rightarrow \eta_c \gamma) < 2.41 \times 10^{-4}$, 90% C.L., first limit.

 \rightarrow confirmation of h_c suppression in *B* decays.

Conclusions

- Many new results from *BABAR*. All results are preliminary.
- Amplitude analyses in $B \rightarrow \phi K^*$:

- results difficult to accommodate within the SM.

• Several new branching ratio measurements of *B* decays to $p\overline{p}h$ with study of intermediate states and decay dynamics.

- first evidence of $B^0 \rightarrow p\overline{p}K^{*0}$ and $B^+ \rightarrow \eta_c K^{*+}$.

- More results on *B* decays to singlet charmonium states:
 - no sign of h_c yet.

 \rightarrow More hadronic *B*-decay results from *B*_A*B*_A*R* in the other *B*_A*B*_A*R* talks.

Back-up Slides

The **BABAR** Detector

EPS-HEP 2007

EPS-HEP 2007

Diagrams for $B \rightarrow p\bar{p}h$ decays, from PRD 66, 014020

FIG. 2. Quark and pole diagrams for three-body baryonic $B \operatorname{decay} \overline{B} \to \mathcal{B}_1 \overline{\mathcal{B}}_2 M$, where the symbol \bullet denotes the weak vertex. Figs. 2(a) and 2(b) correspond to factorizable external W-emission contributions, Figs. 2(c) and 2(d) to factorizable internal W-emission, Figs. 2(e) and 2(f) to nonfactorizable internal W-emission, Fig. 2(g) to W-exchange and Fig. 2(h) to W-annihilation. Penguin contributions are obtained from Figs. 2(c)-2(g) by replacing the $b \to u$ tree transition by the $b \to s(d)$ penguin transition.