Diboson Physics at CDF

European Physical Society Conference on High Energy Physics Manchester, 2007

Anna Sfyrla University of Geneva on behalf of the CDF collaboration

Why diboson physics?

A step towards the higgs and new physics!

- Verification of the Standard Model (SM) predictions
 - Cross section measurements
 - Trilinear Gauge Coupling (TGC) measurements
 - Sensitive to new physics
 - \sim eg. ZZZ, ZZ γ , Z $\gamma\gamma$ absent in SM
 - > TeV ($p\bar{p}$) with respect to LEP (e^+e^-):
 - sensitive to different TGC combinations
 - explores higher energy range

- Significant backgrounds for several interesting processes
 - eg. $H_{\rightarrow}WW$, SUSY channels
- Processes topologically similar to WH, ZH, SUSY
 - Techniques developed in these analyses also applicable there

The CDF II Detector

Dibosons at CDF

Heavy Boson + Photon Production

$\begin{array}{c} W(\rightarrow I \nu) + \gamma \\ Z (\rightarrow e^+ e^-) + \gamma \end{array}$ Clean Signatures and High Yields

 $\begin{array}{c} WW \rightarrow IvIv \\ WZ \rightarrow IIIv \\ ZZ \rightarrow IIII \ / \ IIvv \end{array} \end{array} \begin{array}{c} \mbox{Small Branching Fraction \& Low Backgrounds} \\ \Rightarrow \mbox{Clean Signals but Low Yields} \end{array}$

Semileptonic Decay Channels

WW+WZ \rightarrow Ivjj $\}$ Larger Branching Fraction & Much Larger Backgrounds \Rightarrow Signal / Background < 0.5%

Heavy boson + y

Diboson Physics at CDF

EPS 2007

Z(→e⁺e⁻)+

400

EPS 2007

 Data WW

WZ+ZZ tt ΠWγ Drell-Yan W+jets

250

M_I[GeV]

200

 $\sigma(WW) = 13.6 \pm 2.3(stat) \pm 1.6(sys) \pm 1.2(lumi) \text{ pb}$ NLO prediction: $\sigma(WW) = 12.4 \pm 0.8 \text{ pb}$

Result compatible with the SM expectations!

Exploit WW Kinematics in Higgs and New Physics Searches! (see later talk by E.Lipeles)

Improved Lepton Selection

Lepton acceptance is a key in final states with 3 or more leptons!

- Try to use all tracks and electromagnetic objects found
- Use as much information as possible for each candidate

Electrons

Muons

- J
- Central calorimeter
- Forward calorimeter
 - w/ or w/o Si-based track
- muon chamber hits
 Minimum Ionizing Particle (MIP)
 central and forward regions

Central muons with matched

Tracks

- Fill in regions not fiducial to calorimeters
- No distinction between e and μ

WZ→IIII∨

Expected number of signal events $9.75\pm0.03(stat)\pm0.31(sys)\pm0.59(lumi)$ Expected number of background events $2.65\pm0.28(stat)\pm0.33(sys)\pm0.09(lumi)$ Observed 16 events \Rightarrow significance 6 σ

Improved lepton selection ~ doubles the acceptance! **First observation of a tri-lepton signal at TeV**

 σ (WZ)=5.0^{+1.8}_{-1.6} (stat.+syst.) pb NLO prediction: σ (WZ) = 3.7 ± 0.3 pb

Result compatible with the SM expectations!

$ZZ \rightarrow IIII + II \vee \vee$

Combined result 3σ significance

Analysis built from the two different modes independently

- $ZZ \rightarrow IIII (1.5 \text{ fb}^{-1})$
 - Very clean but very small BR
 - 1 4-lepton event observed!
- ZZ→llvv (1.1 fb⁻¹)
 - Several significant backgrounds but larger BR
 - WW/ZZ separation achieved using an event-by-event calculation of the matrix element probability

 σ (ZZ)=0.75^{+0.71}_{-0.54} (stat.+syst.) pb

NLO prediction: $\sigma(WZ) = 1.4 \pm 0.1 \text{ pb}$

Result compatible with the SM expectations!

WW/WZ observed so far only in the fully leptonic decay channel, at TeV Aim of this analysis the observation in the semi-leptonic channel!

Favorable channel for measuring triple gauge couplings due to the big branching ratio with respect to the leptonic channel

 $\sigma_{WW}^{th} \times BR = 1.81 \text{ pb}$ $\sigma_{WZ}^{th} \times BR = 0.28 \text{ pb}$ $\sigma_{W(e)jj}^{th} = 320.4 \text{ pb}$

Signal/Background initially very poor

Need for a tool with big discriminative power! ⇒ Neural Network

EPS 2007

Neural Network Selection

EPS 2007

Dijet invariant mass after NN cut

EPS 2007

- Signal shape fixed using MC
- Background parameterization motivated by MC
- Both plugged into a likelihood fitter
- Background parameters and signal fraction given by fit to data

WW/WZ→evjj Results

Conclusions

CDF has an intensive diboson program

- W/Z+ γ precision measurements
- WW \rightarrow IIvv most precise measurement at TeV
- \bullet WZ 6σ observation in the leptonic channel
- \bullet ZZ 3σ evidence in the leptonic channel
- WW/WZ in the semileptonic channel
 - limit set using the electron channel
 - work on the muon channel in progress

Future

- Much more data to be analyzed!
- Searches for Anomalous TGC in progress

...Stay Tuned!

EPS 2007

Why dibosons?

Higgs / SUSY / ??? may be hiding somewhere in our diboson samples...

ZZ Event Yields

4-lepton Yields

Z+jets	$0.026 \pm 0.021 \text{ (stat.)} \pm 0.004 \text{ (syst.)} \pm 0.000 \text{ (lumi.)}$
$Z\gamma\gamma$	$0.003 \pm 0.001 \text{ (stat.)} \pm 0.000 \text{ (syst.)} \pm 0.000 \text{ (lumi.)}$
ZZ	$2.516 \pm 0.020 \text{ (stat.)} \pm 0.032 \text{ (syst.)} \pm 0.151 \text{ (lumi.)}$
Total Bkg	$0.029 \pm 0.021 \text{ (stat.)} \pm 0.004 \text{ (syst.)} \pm 0.000 \text{ (lumi.)}$
Total	$2.545 \pm 0.029 \text{ (stat.)} \pm 0.032 \text{ (syst.)} \pm 0.151 \text{ (lumi.)}$
Observed	1

Leptons+MEt Yields

Category	WW	WZ	ZZ	$t\bar{t}$	DY	$W\gamma$	W+jets	Total	Data
e e	22.8	2.8	4.3	1.5	4.8	10.8	12.1	59.1 ± 5.0	61
$\mu \mu$	17.7	2.1	3.5	1.4	15.9	0.0	2.6	43.1 ± 4.2	50
$e { m trk}$	18.7	1.4	1.8	1.4	2.2	2.5	5.2	33.1 ± 2.4	42
$\mu \; { m trk}$	10.0	0.8	1.2	0.8	1.1	0.3	3.4	17.5 ± 1.3	29
Total	69.2	7.1	10.7	5.1	24.0	13.6	23.2	152.9 ± 11.6	182