Chiral behavior of the heavy meson mixing amplitudes in the standard model and beyond

Jernej Kamenik

Jozef Stefan Institute, Ljubljana, Slovenia

In collaboration with Damir Bećirević and Svjetlana Fajfer.

Based on JHEP06(2007)003.

European Physical Society HEP Conference July 20, 2007

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

2 Scope of work

3 Framework

• Bases of $\Delta B = 2$ operators and *B*-parameters

Chiral logarithmic corrections Impact of the 1/2⁺-mesons

5 Conclusions

2 / 17

Control of theoretical uncertainties in $B_{s,d} - \overline{B}_{s,d}$ mixing

- Δm_{B_d} and Δm_{B_s} are used to constrain the shape of the CKM unitarity triangle and thereby determine the amount of the CP-violation in the SM.
- Theoretical uncertainties in computing the values for the decay constants, $f_{B_{s,d}}$, and "bag" parameters, $B_{B_{s,d}}$.
 - Can, in principle, be computed on the lattice:
 - *d*-quark cannot be reached directly extrapolation of results with larger light quark masses is needed.

3 / 17

• Induces systematic uncertainties.

Control of theoretical uncertainties in $B_{s,d} - \overline{B}_{s,d}$ mixing

- Δm_{B_d} and Δm_{B_s} are used to constrain the shape of the CKM unitarity triangle and thereby determine the amount of the CP-violation in the SM.
- Theoretical uncertainties in computing the values for the decay constants, $f_{B_{s,d}}$, and "bag" parameters, $B_{B_{s,d}}$.
 - Can, in principle, be computed on the lattice:
 - *d*-quark cannot be reached directly extrapolation of results with larger light quark masses is needed.
 - Induces systematic uncertainties.

• HM χ PT allows us to gain some control over these uncertainties:

- Predicts the chiral behavior of the hadronic quantities.
- Can be implemented to guide the extrapolation of the lattice results.

3 / 17

Motivation

Impact of lowest lying heavy meson resonances on ${\rm HM}\chi{\rm PT}$ calculations

- HM χ PT combines HQET and spontaneous breaking of chiral symmetry, $SU(3)_L \otimes SU(3)_R \rightarrow SU(3)_V$.
- One computes chiral logarithmic corrections which are expected to be relevant at $m_q \ll \Lambda_\chi.$
 - Condition is satisfied for *u* and *d*-quarks.
 - Ambiguous size of the chiral symmetry breaking scale Λ_χ:
 - $4\pi f_{\pi} \simeq 1 \text{ GeV}$
 - $m_{
 ho} = 0.77 \,\,{
 m GeV}$

Motivation

Impact of lowest lying heavy meson resonances on ${\rm HM}\chi{\rm PT}$ calculations

- HM χ PT combines HQET and spontaneous breaking of chiral symmetry, $SU(3)_L \otimes SU(3)_R \rightarrow SU(3)_V$.
- One computes chiral logarithmic corrections which are expected to be relevant at $m_q \ll \Lambda_\chi.$
 - Condition is satisfied for *u* and *d*-quarks.
 - Ambiguous size of the chiral symmetry breaking scale Λ_χ:

•
$$4\pi f_{\pi} \simeq 1 \text{ GeV}$$

- $m_{
 ho} = 0.77 \text{ GeV}$
- Heavy-light quark systems are more complicated first orbital excitations $(j_{\ell}^{P} = 1/2^{+})$ are not far from the ground $(j_{\ell}^{P} = 1/2^{-})$ states.
- Experimental evidence for scalar D_{0s}^* and axial D_{1s} mesons indicates $\Delta_{S_s} \equiv m_{D_{0s}^*} m_{D_s} = 350$ MeV, $\Delta_{S_q} = 430$ MeV
- Both Δ_{S_s} and Δ_{S_q} are smaller than Λ_{χ} , m_{η} , and even m_K .
- Requires revisiting predictions based on $HM\chi PT$.

Jernej Kamenik (J. Stefan Institute) χ behavior of the $B_{s,d} - \overline{B}_{s,d}$ amplitudes

() < ()</p>

Scope of work

- Investigate the issue on specific examples:
 - Decay constants $f_{B_{d,s}}$, and bag parameters $B_{B_{d,s}}$.
 - SM and supersymmetric (SUSY) effects in the
 - $B_{s,d} \overline{B}_{s,d}$ mixing amplitudes.
- Focus on the chiral limit of these quantities.

5 / 17

Framework

Bases of $\Delta B = 2$ operators and *B*-parameters

"SUSY basis" of $\Delta B = 2$ operators

$$\begin{array}{rcl} O_1 & = & \bar{b}^i \gamma_\mu (1 - \gamma_5) q^i \, \bar{b}^j \gamma^\mu (1 - \gamma_5) q^j \, , \\ O_2 & = & \bar{b}^i (1 - \gamma_5) q^i \, \bar{b}^j (1 - \gamma_5) q^j \, , \\ O_3 & = & \bar{b}^i (1 - \gamma_5) q^j \, \bar{b}^j (1 - \gamma_5) q^i \, , \\ O_4 & = & \bar{b}^i (1 - \gamma_5) q^i \, \bar{b}^j (1 + \gamma_5) q^j \, , \\ O_5 & = & \bar{b}^i (1 - \gamma_5) q^j \, \bar{b}^j (1 + \gamma_5) q^i \, . \end{array}$$

In SM, only O_1 (left-left) operator is relevant in describing the $B_q - \overline{B}_q$ mixing amplitude.

Introducing bag-parameters, B_{1-5} as measures of the difference with respect to the vacuum saturation approximation (VSA)

$$\frac{\langle \bar{B}^0_q | O_{1-5}(\nu) | B^0_q \rangle}{\langle \bar{B}^0_q | O_{1-5}(\nu) | B^0_q \rangle_{\rm VSA}} = B_{1-5}(\nu) \,.$$

Jernej Kamenik (J. Stefan Institute) χ behavior of the $B_{s,d} - \overline{B}_{s,d}$ amplitudes EPS HEP, July 20, 2007 6 / 17

Reducing the number of independent operators

In HQET, heavy quark spin symmetry ($h^\dagger \gamma_0 = h^\dagger$) imposes relation

$$\langle \bar{B}_q^0 | \widetilde{O}_3 + \widetilde{O}_2 + \frac{1}{2} \widetilde{O}_1 | B_q^0 \rangle = 0.$$

In HM χ PT $\left\{ H_q^Q(v) = \frac{1+\nu'}{2} \left[P_\mu^{Q*}(v) \gamma^\mu - P^Q(v) \gamma_5 \right]_q, H_q^{\bar{Q}}(v) = \left[P_\mu^{\bar{Q}*}(v) \gamma^\mu - P^{\bar{Q}}(v) \gamma_5 \right]_q \frac{1-\nu'}{2} \right\}$, the bosonized operators are color blind

$$\begin{split} \widetilde{O}_{1} &= \sum_{X} \beta_{1X} \operatorname{Tr} \left[(\xi \overline{H}^{Q})_{q} \gamma_{\mu} (1 - \gamma_{5}) X \right] \operatorname{Tr} \left[(\xi H^{\bar{Q}})_{q} \gamma^{\mu} (1 - \gamma_{5}) X \right] + \mathrm{c.t.} \,, \\ \widetilde{O}_{2} &= \sum_{X} \beta_{2X} \operatorname{Tr} \left[(\xi \overline{H}^{Q})_{q} (1 - \gamma_{5}) X \right] \operatorname{Tr} \left[(\xi H^{\bar{Q}})_{q} (1 - \gamma_{5}) X \right] + \mathrm{c.t.} \,, \\ \widetilde{O}_{4} &= \sum_{X} \beta_{4X} \operatorname{Tr} \left[(\xi \overline{H}^{Q})_{q} (1 - \gamma_{5}) X \right] \operatorname{Tr} \left[(\xi^{\dagger} H^{\bar{Q}})_{q} (1 + \gamma_{5}) X \right] \\ &\quad + \bar{\beta}_{4X} \operatorname{Tr} \left[(\xi H^{\bar{Q}})_{q} (1 - \gamma_{5}) X \right] \operatorname{Tr} \left[(\xi^{\dagger} \overline{H}^{Q})_{q} (1 + \gamma_{5}) X \right] + \mathrm{c.t.} \,, \end{split}$$

where $X \in \{1, \gamma_5, \gamma_{\nu}, \gamma_{\nu}\gamma_5, \sigma_{
u\rho}\}$

Chiral logarithmic corrections

Chiral logarithmic corrections to SUSY basis bag parameters

All factorisable chiral loop corrections can be absorbed into HM χ PT bag-parameter and decay constant definitions ($\beta_x \propto \tilde{B}_x/\hat{f}^2$).

Agreement with the full unquenched scenario in the parallel computation of W. Detmold and C.J.D. Lin Phys.Rev.D76 (2007) 014501 [hep-lat/0612028].

Jernej Kamenik (J. Stefan Institute) χ behavior of the $B_{s,d} - \overline{B}_{s,d}$ amplitudes EPS HEP, July 20, 2007 8 / 17

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Chiral logarithmic corrections

Impact of the $1/2^+$ -mesons

- New $J_{\ell}^P = 1/2^+$ field operators $S_q(v) = \frac{1+y'}{2} \left[P_{1\mu}^*(v) \gamma_{\mu} \gamma_5 P_0(v) \right]_q$.
- New scale parameter Δ_S ≈ 400 MeV.

- In the limit $x = m_{\pi}/\Delta_S \rightarrow 0$ all leading order corrections due to $1/2^+$ -mesons are analytic in m_{π} .
- Kaon and eta logarithms are competitive in size with the terms proportional to $\Delta_5^2 \log(4\Delta_5^2/\mu^2)$
- Relevant chiral logarithmic corrections are those coming from the $SU(2)_L \otimes SU(2)_R \rightarrow SU(2)_V$ theory (below the Δ_S scale)

$$\hat{f}_q = \alpha \left[1 - \frac{1 + 3g^2}{2(4\pi f)^2} \frac{3}{2} m_\pi^2 \log \frac{m_\pi^2}{\mu^2} + c_f(\mu) m_\pi^2 \right]$$

$$\hat{t}_q^+ = \alpha^+ \left[1 - \frac{1 + 3\tilde{g}^2}{2(4\pi f)^2} \frac{3}{2} m_\pi^2 \log \frac{m_\pi^2}{\mu^2} + c_f^+(\mu) m_\pi^2 \right]$$

Jernej Kamenik (J. Stefan Institute) χ behavior of the $B_{s,d} - \overline{B}_{s,d}$ amplitudes

Bag-parameters

Operator bosonization receives new contributions

$$\begin{split} \widetilde{D}_{1} &= \sum_{X} \beta_{1X} \operatorname{Tr} \left[\left(\xi \overline{H}^{Q} \right)_{q} \gamma_{\mu} (1 - \gamma_{5}) X \right] \operatorname{Tr} \left[\left(\xi H^{\tilde{Q}} \right)_{q} \gamma^{\mu} (1 - \gamma_{5}) X \right] \\ &+ \beta_{1X}' \left\{ \operatorname{Tr} \left[\left(\xi \overline{H}^{Q} \right)_{q} \gamma_{\mu} (1 - \gamma_{5}) X \right] \operatorname{Tr} \left[\left(\xi S^{\tilde{Q}} \right)_{q} \gamma^{\mu} (1 - \gamma_{5}) X \right] + \mathrm{h.c.} \right\} \\ &+ \beta_{1X}'' \operatorname{Tr} \left[\left(\xi \overline{S}^{Q} \right)_{q} \gamma_{\mu} (1 - \gamma_{5}) X \right] \operatorname{Tr} \left[\left(\xi S^{\tilde{Q}} \right)_{q} \gamma^{\mu} (1 - \gamma_{5}) X \right] . \end{split}$$

Similarly for \tilde{O}_2 and \tilde{O}_4 .

 χ behavior of the $B_{s,d} - \overline{B}_{s,d}$ amplitudes Jernej Kamenik (J. Stefan Institute) EPS HEP, July 20, 2007

Bag-parameters

Typical loop integrals involving the new Δ_S scale probe large pion momenta in the chiral limit. The two scales $(m_{\pi} \text{ and } \Delta_S)$ do not decouple as in the case of \hat{f} . We attempt an expansion:

$$\begin{split} &-2(4\pi)^2 v_{\mu} v_{\nu} \times i \mu^{\epsilon} \int \frac{d^{4-\epsilon} p}{(2\pi)^{4-\epsilon}} \frac{p^{\mu} p^{\nu}}{(p^2 - m_{\pi}^2)(\Delta_S - \nu \cdot p)^2} \\ &= -\frac{2(4\pi^2)}{\Delta_S^2} v_{\mu} v_{\nu} \left[i \mu^{\epsilon} \int \frac{d^{4-\epsilon} p}{(2\pi)^{4-\epsilon}} \frac{p^{\mu} p^{\nu}}{p^2 - m_{\pi}^2} + \mathcal{O}(1/\Delta_S^2) \right] \\ &\to -\frac{m_{\pi}^4}{2\Delta_S^2} \log \frac{m_{\pi}^2}{\mu^2} + \dots, \end{split}$$

- Expansion around the decoupling limit of the positive parity states.
- Series of local operators with Δ_{SH} dependent prefactors.
- Effective counter terms of a theory with no positive parity mesons.
- Like for the decay constants, the relevant chiral expansion of the bag-parameters is the one derived in the $SU(2)_L \otimes SU(2)_R \rightarrow SU(2)_V$ theory.

11 / 17

$$\widetilde{B}_{1q} = \widetilde{B}_1^{ ext{Tree}} \left[1 - rac{1 - 3g^2}{2(4\pi f)^2} m_\pi^2 \log rac{m_\pi^2}{\mu^2} + c_{B_1}(\mu) m_\pi^2
ight]$$

$$\widetilde{B}_{2,4q} = \widetilde{B}_{2,4}^{\mathrm{Tree}} \left[1 + rac{3g^2 Y \mp 1}{2(4\pi f)^2} m_\pi^2 \log rac{m_\pi^2}{\mu^2} + c_{B_{2,4}}(\mu) m_\pi^2
ight]$$

Jernej Kamenik (J. Stefan Institute) χ behavior of the $B_{s,d} - \overline{B}_{s,d}$ amplitudes EPS HEP, July 20, 2007

Conclusions

- We revisited the computation of the $B_{s,d} \overline{B}_{s,d}$ mixing amplitudes in the framework of HM χ PT.
- We considered chiral logarithmic corrections to the SM as well as SUSY bag parameters.
- We studied the impact of the near scalar mesons to the predictions derived in HMχPT in which these contributions were previously ignored.
 - Their contributions are competitive in size and thus they cannot be ignored nor separated from the discussion of the kaon and/or η-meson loops.
 - They do not spoil the pion logarithmic corrections to the decay constants and bag-parameters. The formulae derived in HM χ PT can still (and should) be used to guide the chiral extrapolations of the lattice results, albeit for the pion masses lighter than Δ_S .
- Side-result: chiral logarithmic corrections to the scalar meson decay constants are the same as for the pseudoscalar ones, modulo replacement $g \rightarrow \tilde{g}$.

Perspective

- Similar conclusions regarding the impact of the 1/2⁺-mesons on leading chiral logarithms have been reached in other processes
 - Effective HMχPT couplings between heavy and light mesons (g,h,ğ)
 S. Fajfer and J.K., Phys.Rev.D74 (2006) 074023 [hep-ph/0606278]
 - Isgur-Wise functions in semileptonic B to D meson decays (ξ,τ_{1/2}, ξ̃) J.O.Eeg, S. Fajfer and J.K., Accepted for publication in JHEP [arXiv:0705.4567]

Appendix

Jernej Kamenik (J. Stefan Institute) χ behavior of the $B_{s,d} - \overline{B}_{s,d}$ amplitudes EPS HEP, July 20, 2007 13 / 17

문 문 문

- 一司

Conclusions

Chiral extrapolation

Jernej Kamenik (J. Stefan Institute) χ behavior of the $B_{s,d} - \overline{B}_{s,d}$ amplitudes EPS HEP, July 20, 2007 14 / 17

э

Chiral extrapolation

Extracting the effective coupling dependence on the pseudo-Goldstone masses.

$$\frac{1}{m_j^2} \frac{\mathrm{d}g_{P_a^*P_b\pi^i}^{\mathrm{eff.}}}{\mathrm{d}\log m_j^2} = \frac{\mathbf{g}}{(4\pi f)^2} \\ \times \left\{ \frac{\lambda_{ac}^j \lambda_{ca}^j + \lambda_{bc}^j \lambda_{cb}^j}{2} \left[-3\mathbf{g}^2 - \mathbf{h}^2 \left(1 - \frac{6\Delta_{SH}^2}{m_j^2} \right) \right] \right. \\ \left. + \frac{\lambda_{ac}^j \lambda_{cd}^i \lambda_{db}^j}{\lambda_{ab}^i} \left[\mathbf{g}^2 - \mathbf{h}^2 \frac{\mathbf{\tilde{g}}}{\mathbf{g}} \left(1 - \frac{6\Delta_{SH}^2}{m_j^2} \right) \right] \right\}$$

Jernej Kamenik (J. Stefan Institute) χ behavior of the $B_{s,d} - \overline{B}_{s,d}$ amplitudes EPS HEP, July 20, 2007 15 / 17

イロン イボン イヨン イヨン

3

Chiral extrapolation

-

Extracting the effective coupling dependence on the pseudo-Goldstone masses.

$$\frac{1}{m_j^2} \frac{\mathrm{d}g_{p_a^*P_b\pi^i}^{\mathrm{eff.}}}{\mathrm{d}\log m_j^2} = \frac{\mathbf{g}}{(4\pi f)^2} \\ \times \left\{ \frac{\lambda_{ac}^j \lambda_{ca}^j + \lambda_{bc}^j \lambda_{cb}^j}{2} \left[-3\mathbf{g}^2 - \mathbf{h}^2 \left(1 - \frac{6\Delta_{SH}^2}{m_j^2} \right) \right] \right. \\ \left. + \frac{\lambda_{ac}^j \lambda_{cd}^i \lambda_{db}^j}{\lambda_{ab}^i} \left[\mathbf{g}^2 - \mathbf{h}^2 \frac{\mathbf{\tilde{g}}}{\mathbf{g}} \left(1 - \frac{6\Delta_{SH}^2}{m_j^2} \right) \right] \right\}$$

Large Δ_{SH} dependence.

글 제 제 글 제

3

Conclusions

Chiral extrapolation

$$\mu^{(4-D)} \int \frac{\mathrm{d}^D q}{(2\pi)^D} \frac{q^\mu q^\nu}{(q^2 - m^2)(\nu \cdot q - \Delta)}$$

Jernej Kamenik (J. Stefan Institute) χ behavior of the $B_{s,d} - \overline{B}_{s,d}$ amplitudes EPS HEP, July 20, 2007 16 / 17

æ

-

Conclusions

Chiral extrapolation

$$\mu^{(4-D)} \int \frac{\mathrm{d}^D q}{(2\pi)^D} \frac{q^\mu q^\nu}{(q^2 - m^2)(\nu \cdot q - \Delta)}$$

Loop integral expansion in $1/\Delta_{SH}$

$$\Rightarrow \quad \mu^{(4-D)} \int \frac{\mathrm{d}^D q}{(2\pi)^D} \frac{q^\mu q^\nu}{(q^2 - m^2)} \frac{-1}{\Delta} (1 + \frac{q \cdot v}{\Delta} + \ldots)$$

(All even orders vanish.)

$$\left(1-rac{6\Delta_{SH}^2}{m_j^2}
ight) \Rightarrow rac{m_j^2}{4\Delta_{SH}^2}$$

- Expansion around the decoupling limit of the positive parity states.
- Series of local operators with Δ_{SH} dependent prefactors.
- Effective counter terms of a theory with no positive parity mesons.

Jernej Kamenik (J. Stefan Institute) χ behavior of the $B_{s,d} - \overline{B}_{s,d}$ amplitudes EPS HEP, July 20, 2007 16 / 17

Restrictions on bosonized operators matching to HQET

Contraction of Lorentz indices and HQET parity conservation requires the same X to appear in both traces of a summation term. Any insertions of y' can be absorbed via yH = H, while any nonfactorisable contribution with a single trace over Dirac matrices can be reduced to this form by using the 4 × 4 matrix identity

$$\begin{aligned} 4\mathrm{Tr}(AB) &= \mathrm{Tr}(A)\mathrm{Tr}(B) + \mathrm{Tr}(\gamma_5 A)\mathrm{Tr}(\gamma_5 B) + \mathrm{Tr}(A\gamma_{\mu})\mathrm{Tr}(\gamma^{\mu} B) \\ &+ \mathrm{Tr}(A\gamma_{\mu}\gamma_5)\mathrm{Tr}(\gamma_5\gamma^{\mu} B) + 1/2\mathrm{Tr}(A\sigma_{\mu\nu})\mathrm{Tr}(\sigma^{\mu\nu} B). \end{aligned}$$

Jernej Kamenik (J. Stefan Institute) χ behavior of the $B_{s,d} - \overline{B}_{s,d}$ amplitudes EPS HEP, July 20, 2007 17 / 17