KLOE results on lepton flavor universality tests

T. Spadaro, LNF INFN for the KLOE collaboration

EPS – HEP 07 Conference Manchester, UK, 19th July, 2007

In SM, electron and muon differs only by mass and coupling to Higgs

New physics extensions of the SM with LFV not ruled out, so:

- Can search for processes forbidden/ultra-rare in SM, e.g. $K{\rightarrow}\,\mu e$

• Can measure ratio of coupling constants, seeking deviations from 1 in processes well known in SM, like:

 $> \mathbf{R}_{e\mu} = \Gamma(\mathbf{K}_{e3}) / \Gamma(\mathbf{K}_{\mu3}) \rightarrow \mathbf{G}_{F}^{e} / \mathbf{G}_{F}^{\mu}$

 $R_{\rm K} = \Gamma({\rm K} \to {\rm ev})/\Gamma({\rm K} \to {\rm \mu v})$

Don't expect deviations from SM comparing $K_{_{e3}}$ vs $K_{_{\mu3}}$ FF t dependences, but slopes can help in testing H⁺ effects in:

> $R_{_{K\pi}} = \Gamma(K \to \mu \nu) / \Gamma(\pi \to \mu \nu)$

LU from semileptonic kaon decays

Master formula: $\Gamma(K_{l3(\gamma)}) = |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 \frac{G_F^2 m_K^5}{128\pi^3} S_{EW} C_K^2 I_{K\ell} (1 + \delta_K^\ell)$

Theoretical inputs:

- $f_{+}(0)$, form factor at zero momentum transfer: purely theoretical calculation
- δ^{ℓ}_{K} , e.m.- and (for K[±]) I-breaking effects, known @ few per mil level
- [S_{EW}, short distance corrections (1.0232), $C_{K} = 1 (2^{-1/2})$ for K⁰ (K⁺) decays]

Experimental inputs:

- $\mathbf{I}_{\mathbf{K}}^{\ell} = \mathbf{I}(\{\lambda_{+}\}, \{\lambda_{0}\}, \mathbf{0})$, phase space integral, λ_{+}, λ_{0} denote the t-dependence of vector and scalar form factors;
- $\Gamma_{K\ell^{3}(\gamma)}$, semileptonic decay width, evaluated from γ -inclusive BR and lifetime
- m_k, appropriate kaon mass

KLOE measurement for all relevant inputs: BR's, τ's, ff's

Can compare short distance couplings $\mathbf{g} = |\mathbf{G}_F \mathbf{V}_{us}|$ for e and μ modes

LU from Kl3 decays: results from KLOE

Use ff slopes from $KLOE_{e3}$, $KLOE_{u3}$ to evaluate phase space integrals

Mode	$\mathbf{f}_{_+}(0) imes \mathbf{V}_{_{\mathrm{us}}} $	Error,%	KLOE input	External input
K _{Le3}	0.21547(72)	0.34	ff, BR, τ_{L}	
K _{Lµ3}	0.21661(93)	0.43	ff, BR, τ_{L}	
K _{Se3}	0.21522(145)	0.68	ff , BR	τ_{s} [PDG]
K^{+}_{e3}	0.21465(137)	0.64	ff, BR*, τ^{+*}	τ^+ [PDG]
K ⁺ _{µ3}	0.21302(155)	0.73	BR*, $\tau^{_{+}*}$	τ^+ [PDG]
Avg TM	0.21556(59)	0.27		

e/μ universality satisfied, using only KLOE results get accuracy <0.004: K_L g(μ)/g(e) = 1.0054(44) cfr with g(μ)/g(e) = 1.0232(68) [PDG04] K⁺ g(μ)/g(e) = 0.9924(54) cfr with g(μ)/g(e) = 1.0020(80) [PDG04] Average g(μ)/g(e) = 1.0005(38) Compare with τ → *l*vv decays: g(μ)/g(e) = 0.9999(20) TM takes correlations into account (see E. De Lucia talk), P(χ²/ndf = 6.1/4) = 19%

KLOE results on lepton flavor universality tests – T. Spadaro – EPS-HEP 07, Manchester, 19 Jul 07

4

SM prediction has 0.04% precision, benefiting of cancellation of hadronic uncertainties (no f_K)

Helicity suppression boosts NP effects in R_K [Masiero-Paradisi-Petronzio]

In R-parity MSSM, LFV can give 1% deviations from SM:

$$R_K^{LFV} \simeq R_K^{SM} \left[1 + \left(\frac{m_K^4}{M_H^4}\right) \left(\frac{m_\tau^2}{m_e^2}\right) |\Delta_R^{31}|^2 \tan^6 \beta \right]$$

NP dominated by contribution of ev_{τ} final state, with effective coupling

 ℓ_R

New measurement of R_{K} can be very interesting, if error is pushed @1% or better

Kaon physics at KLOE

 $K_{_{S,L}}$ K^{+,-} pairs from ϕ decays, emitted ~back to back, p ~ 110 MeV

Identification of $K_{S,L}(K^{+,-})$ decay (interaction) tags presence of $K_{L,S}(K^{-,+})$

Almost pure K_{L,S} and K^{+,-} beams of known momentum + PID (kinematics & TOF):

• Access to absolute BR's

• Precise measurements of K_{Le3} from factors and K_L , K^+ lifetimes (acceptance ~0.5 τ_L , τ_+)

Above points crucial for Vus determination from Ke3 decays

Data taking for KLOE experiment, years 2001-2005, now run completed

~2.5 fb⁻¹ integrated @ $\sqrt{s}=M(\phi)$, corresponding to 2.5 10⁹ K_sK_L pairs

 R_{κ} analysis presented here based on first 1700 pb⁻¹ collected

BR(K_{e2})~10⁻⁵, expect at most 4×10⁴ events

Perform direct search for K_{e2} , K_{u2} , no tag: gain ×4 of statistics

Select 1-prong decays in DC, K track from IP, secondary 180<P<270 MeV Exploit tracking of K and secondary: assuming $m_v=0$ get M_{lep}^2

KLOE results on lepton flavor universality tests – T. Spadaro – EPS-HEP 07, Manchester, 19 Jul 07

8

 $K^- \rightarrow \mu \nu$

Analysis of $R_{\kappa} = Ke2/Km2$

Jo Jy KLOK

Apply quality cuts, OK to count $K_{\mu 2}$, not for K_{e2} (still B ~ 10×S) 1-prong efficiency ratio correction only 2%, use data CS of $K_{\mu 2}$ to check Further rejection for K_{e2} : extrapolate track to EmC, select closest cluster PID exploits EmC granularity: energy deposits E_{μ} into 5 layers in depth

KLOE results on lepton flavor universality tests – T. Spadaro – EPS-HEP 07, Manchester, 19 Jul 07

KLOE results on lepton flavor universality tests – T. Spadaro – EPS-HEP 07, Manchester, 19 Jul 07 **10**

Analysis of Ke2/Km2 – PID via EmC

Analysis of R_{K} – Count Ke2 events

 $K_{_{e2}}$ event counts: likelihood fit of $M_{_{lep}}$ vs $E_{_{RMS}}$ •Input: MC shapes for $K_{_{e2(\gamma)}}$ and background

•Fit parameters: # of K_{e^2} and background, get 8090±160 observed evts

Analysis of R_{K} – Radiative corrections

 $R_{K} = \frac{N_{Ke2}}{N_{K\mu2}} \begin{bmatrix} \varepsilon_{K\mu2}^{\text{TRG}} \\ \varepsilon_{Ke2}^{\text{TRG}} \end{bmatrix} \begin{bmatrix} C^{\text{TRK}} \frac{\varepsilon_{K\mu2}^{\text{TRK}}}{\varepsilon_{Ke2}^{\text{TRK}}} \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1}{C^{\text{PID}} \varepsilon_{Ke2}^{\text{PID}}} \end{bmatrix} \frac{1}{\varepsilon^{\text{IB}}} = (2.55 \pm 0.05 \pm 0.05) \times 10^{-5}$

Agrees w SM: (2.472 ± 0.001)×10⁻⁵ &2 NA48 preliminary: (2.43±0.04)×10⁻⁵

R_{K} – Perspectives toward 1% error

Present status

1.1% Signal counts/1.7fb⁻¹

0.7% Bkg subtraction 1.4% MC Bkg statistics 1.9% stat error To complete analysis

+30% of data under processing +40% w recover of prompt K decays ×2 rejection from kinematics ×2 MC stat under processing

1.5% incomplete PID CS coverage0.9% one-prong CS stat0.9% TRG minimum-bias stat

2.0% syst error

× 4--8 CS stat available, loosen PID cut < 0.3% using all data Better control of trigger variables

Will push error @ 1%: final mmt will be compared with forecoming mmt with 0.3% accuracy from P326/NA62, see R. Fantechi talk in BSM session

Other NP searches in helicity-suppressed decays: $\Gamma(K \rightarrow \mu \nu)/\Gamma(\pi \rightarrow \mu \nu)$ Pseudoscalar currents, e.g. due to H⁺, affect the K width:

$$\frac{\Gamma(M \to \ell \nu)}{\Gamma_{SM}(M \to \ell \nu)} = \left[1 - \tan^2 \beta \left(\frac{m_{s,d}}{m_u + m_{s,d}}\right) \frac{m_M^2}{m_H^2}\right]^2 \text{ for } \mathbf{M} = \mathbf{K}, \, \pi \text{ [Hou, Isidori-Paradisi]}$$

Expect 0.4% effect on K/\pi ratio wrt SM, $\frac{\Gamma(K \to \mu\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))} = \frac{m_K \left(1 - \frac{m_{\mu}^2}{m_K^2}\right)^2}{m_{\pi} \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2}\right)^2} \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_{\pi}^2} \frac{1 + \frac{\alpha}{\pi}C_K}{1 + \frac{\alpha}{\pi}C_{\pi}}$ Theoretical inputs:

- **f**_K /f_π=1.189(7), from HPQCD-UKQCD [arXiv:0706.1726]
- Radiative corrections $C_{K,\pi}$ for K and π decays [Marciano PRL93 231803,2004]

Experimental inputs:

• $m_{_{K,\pi,\mu}}, \Gamma(\pi_{_{\mu2}})$ from PDG

 $K_{\mu 2}$ – Sensitivity to NP

 $\bullet \ \tau^{\scriptscriptstyle +}$ from average of PDG and recent KLOE measurement

• BR(K⁺ $\rightarrow \mu^+ \nu(\gamma)$) = 63.66(9)(15)%, from analysis of ~ 175 pb⁻¹ of 2002 data t: V (V = 0.2323(15))

Get: $V_{us}/V_{ud} = 0.2323(15)$

KLOE results on lepton flavor universality tests – T. Spadaro – EPS-HEP 07, Manchester, 19 Jul 07

KLOE measurements greatly improve knowledge of gauge coupling: Comprehensive set of observables for K decays: BR's, τ's, FF's Lepton universality test from K₁₃ decays satisfied at < 0.5%</p>

New and interesting tests of NP effects from two-body decay studies:

Golden observable: R_K, measured @ 3%, already interesting to limit

Solid roadmap to push both statistical and systematic errors down @ 1%

Sensitivity to NP effects from $K_{\mu 2}/\pi_{\mu 2}$:

Complementary with Babar-Belle average of $B \rightarrow \tau v$ Expect both theoretical and experimental improvements, see F. Mescia's talk

Future developments:

Focus put on FF slopes from analysis of K[±]₁₃ decays, still missing

Don't forget, analyses of whole data set for $K_s \rightarrow \pi \mu \nu$, FF's for $K_L \rightarrow \pi \mu \nu$