CLEO-c Measurement of the Pseudoscalar Decay Constant f_{Ds} & the Ratio f_{Ds}/f_{D^+}

Sheldon Stone, Syracuse University

Leptonic Decays: $D \rightarrow \ell^+ \nu$

Introduction: Pseudoscalar decay constants

c and \overline{q} can annihilate, probability is ∞ to wave function overlap Example :

In general for all pseudoscalars:

$$\Gamma(\mathbf{P}^+ \to \ell^+ \nu) = \frac{1}{8\pi} G_F^2 f_P^2 m_\ell^2 M_P \left(1 - \frac{m_\ell^2}{M_P^2} \right)^2 |V_{Qq}|^2$$

Calculate, or measure if V_{Oa} is known

EPS Manchester, July 19 – 25, 2007

Goals in Leptonic Decays

- Test theoretical calculations in strongly coupled theories in non-perturbative regime
- f_B & f_{Bs}/f_B needed to improve constraints from $\Delta m_d \& \Delta m_s / \Delta m_d$ Hard to measure directly (i.e. $B \rightarrow \tau^+ \nu$ gives $V_{\mu b} f_{B}$), but we can determine f_D & f_{Ds} using $D \rightarrow \ell^+ v$ and use

them to test theoretical models (i.e. Lattice QCD)

New Physics Possibilities

■ In Standard Model $\Gamma(P^+ \rightarrow \tau^+ \nu)$

 $\Gamma(\mathbf{P}^{+} \rightarrow \mu^{+} \nu) \qquad M_{p}^{2}$ $\bullet \text{ Another Gauge}$ $\bullet \text{ Boson could also}$ $\bullet \text{ mediate decay, could}$

modify ratio or change decay rates

See Hewett [hep-ph/9505246] & Hou, PRD 48, 2342 (1993).

New Physics Possibilities II

In SUSY Akeroyd calculated Leptonic decay rate as a function of m_s/m_{c.}
 In terms of SUSY parameter R=tanβ/m_H

See Akeryod [hep-ph/0308260]

.06 $\mathbf{r}_{s} = \text{meas rate/SM rate}$ 0.9 $m_{s}/m_{c}=0.1$ From Akeroyd 0.8 0.1 0.2 0.3

Experimental methods

 DD production at threshold: used by Mark III, and more recently by CLEO-c and BES-II.

•Unique event properties •Large cross sections: $\sigma(D^{\circ}\overline{D^{\circ}}) = 3.72\pm0.09$ nb $\sigma(D^{+}D^{-}) = 2.82\pm0.09$ nb $\sigma(D_{S}D_{S}^{*}) = \sim0.9$ nb Continuum ~12 nb

> Ease of B measurements using "double tags"

• $\mathcal{B}_{A} = # \text{ of } A/# \text{ of } D's$

Invariant masses

- D_S studies done at E_{cm}=4170 MeV
- To choose tag candidates:
 - Fit distributions & determine σ
 - Cut at ±2.5 σ
- Define sidebands to measure backgrounds 5-7.5 σ
- Total # of Tags
 = 31,302± 472 (stat)

EPS Manchester, July 19 – 25, 2007

Measurements of f_{Ds}

- Two separate techniques
- (1) Measure $D_S^+ \rightarrow \mu^+ \nu$ along with $D_S \rightarrow \tau^+ \nu$, $\tau \rightarrow \pi^+ \nu$. This requires finding
 - a D_S⁻ tag,
 - a γ from either $D_S^{*-} \rightarrow \gamma D_S^{-}$ or $D_S^{*+} \rightarrow \gamma \mu^+ \nu$.
 - the muon or pion
 - Then inferring a single missing v using kinematical constraints (use 314 pb⁻¹, results are accepted for publication)

 (2) Find D_S⁺→τ⁺ν, τ →e⁺νν opposite a D_S⁻ tag (use 195 pb⁻¹, results are preliminary)

Measurement of $D_S^+ \rightarrow \mu^+ \nu$

• We see all the particles from $e^+e^- \rightarrow D_s^*D_s$, γ , D_S (tag) + μ^+ except for the single v We use a kinematic fit to (a) improve the resolution & (b) remove ambiguities Constraints include: total p & E, tag D_S mass, $\Delta m = M(\gamma D_S) - M(D_S)$ [or $\Delta m = M(\gamma \mu \nu) - M(\mu \nu)$] = 143.6 MeV, E of D_{S} (or D_{S}^{*}) fixed • Lowest χ^2 solution in each event is kept • No χ^2 cut is applied

Tag Sample using γ

First we define the tag sample by computing the MM*² off of the $\gamma \& D_{S}$ tag $MM^{*2} = (E_{CM} - E_{D_{c}} - E_{\gamma})^{2} - (-\vec{p}_{D_{c}} - \vec{p}_{\gamma})^{2}$ Total of $11880 \pm 399 \pm 504$ tags, after the selection on MM^{*2}.

Define Three Classes

Class (i), single track deposits < 300 MeV in calorimeter, minimum ionizing (accepts 99% of muons and 60% of kaons & pions)

- Class (ii), single track deposits > 300 MeV in calorimeter (accepts 1% of muons and 40% of kaons & pions)
- Class (iii) single track consistent with electron
- For all 3 cases require no other γ with energy > 300 MeV.

The MM²

• To find the signal events, we compute $MM^{2} = (E_{CM} - E_{D_{S}} - E_{\gamma} - E_{\mu})^{2} - (-\vec{p}_{D_{S}} - \vec{p}_{\gamma} - \vec{p}_{\mu})^{2}$

Signal $\tau v, \tau \rightarrow \pi v$

MM² In Data

• Clear $D_S^+ \rightarrow \mu^+ \nu$ signal for case (i) Will show that events <0.2 GeV² are mostly $D_S \rightarrow \tau^+ \nu$, $\tau \rightarrow \pi^+ \nu$ in cases (i) & (ii) ■ No $D_S \rightarrow e^+ v$ seen, case (iii)

Background Samples

- Two sources of background
- 1) Bkgrnd under invariant mass peaks – Use sidebands to estimate
- In $\mu^+\nu$ signal region, case (i) & |MM|²<0.05 GeV², 3.5 bkgrd, out of 92 events
- Bkgrnd for cases (i) & (ii) & $MM^{2} < 0.20 \text{ GeV}^{2} = 9.0 \pm 2.3$
- 2) Backgrounds from real D_{s} decays, e.g. $\pi^+\pi^0\pi^0$, or $D_S \rightarrow \tau^+\nu$, $\tau \rightarrow \pi^+ \pi^0 \nu_{...} < 0.2 \text{ GeV}^2$, none in uv signal region

■ $B(D_{S} \rightarrow \pi^{+}\pi^{o}) < 1.1 \times 10^{-3} \&$ γ energy cut yields <0.2 evts

Backgrounds from real D_{S}^{+} in $\tau \rightarrow \pi v$							
Source	$\mathcal{B}(\%)$	# of events case (i)	$\# \mbox{ of events } \mbox{case}(\mbox{ii})$	Sum			
$D_s^+ \to X \mu^+ \nu$	8.2	$0^{+1.8}_{-0}$	0	$0^{+1.8}_{-0}$			
$D_s^+ \to \pi^+ \pi^0 \pi^0$	1.0	$0.03 {\pm} 0.04$	$0.08 {\pm} 0.03$	$0.11 {\pm} 0.04$			
$D_s^+ \to \tau^+ \nu$	6.4						
$\tau^+ \to \pi^+ \pi^0 \overline{\nu}$	1.5	$0.55 {\pm} 0.22$	$0.64{\pm}0.24$	$1.20 {\pm} 0.33$			
$\tau^+ \to \mu^+ \overline{\nu} \nu$	1.0	$0.37 {\pm} 0.15$	0	$0.37 {\pm} 0.15$			
Sum		$1.0^{+1.8}_{-0}$	$0.7 {\pm} 0.2$	$1.7^{+1.8}_{-0.4}$			

Check: $\mathscr{C}(D_S^+ \rightarrow K^+ K^o)$

- Do almost the same analysis but consider MM² off of an identified K⁺
- Allow extra charged tracks and showers to not veto K^o decays or

not veto K° decays or interactions in EM cal
Signal verifies expected MM² resolution
Find (2.90±0.19±0.18)%, compared with result from double tags (3.00±0.19±0.10)%

Branching Ratio & Decay Constant

• $D_S^+ \rightarrow \mu^+ \nu$

92 signal events, 3.5 background, use SM to calculate τν yield near 0 MM² based on known τν/μν ratio (~7 evnts)
 B(D_S⁺→μ⁺ν) = (0.597±0.067±0.039)%

 $\square D_{S}^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \pi^{+} \nu$

Sum case (i) 0.05 < MM² < 0.2 GeV² & case (ii) -0.05 < MM² < 0.2 GeV². Total of 56 signal and 8.6 background

■ $B(D_S^+ \rightarrow \tau^+ \nu) = (8.0 \pm 1.3 \pm 0.4)\%$

- By summing both cases above,(& use SM ratio) find $B^{eff}(D_S^+ \rightarrow \mu^+ \nu) = (0.638 \pm 0.059 \pm 0.033)\%$
- f_{Ds}=274 ± 13 ± 7 MeV
- $B(D_{S}^{+} \rightarrow e^{+}v) < 1.3x10^{-4}$

 $\mathcal{C}(D_{S}^{+} \rightarrow \mu^{+} \nu)$ Systematic errors

Error Source	Size $(\%)$
Track finding	0.7
Photon veto	1
Minimum ionization	1
Number of tags	5
Total	5.2

Measuring $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

- Use 195 pb⁻¹ for this preliminary analysis
- $B(D_S^+ \rightarrow \tau^+ \nu) \bullet B(\tau^+ \rightarrow e^+ \nu \nu) \sim 1.3\%$ is "large" compared with expected $B(D_S^+ \rightarrow Xe^+ \nu) \sim 8\%$
 - Technique is to find events with an e⁺ opposite D_{S}^{-} tags & no other tracks, with Σ calorimeter energy < 400 MeV
- No need to find γ from D_S^* ■ $B(D_S^+ \rightarrow \tau^+ \nu)$
 - =(6.29±0.78±0.52)%
- f_{Ds}=278 ± 17 ± 12 MeV

$f_{D_s} \ \& \ f_{D_s} / f_{D^+}$

- Weighted Average: f_{Ds}=275±10±5 MeV, the systematic error is mostly uncorrelated between the measurements
- Previously CLEO-c measured

 $f_{D^{+}} = (222.6 \pm 16.7^{+2.3}_{-3.4}) \text{ MeV}^{\dagger}$ M. Artuso et al., Phys .Rev. Lett. 95 (2005) 251801 $^{\dagger} \text{ Thus } f_{Ds} / f_{D} + = 1.24 \pm 0.10 \pm 0.03$

■ $\Gamma(D_S^+ \rightarrow \tau^+ \nu) / \Gamma(D_S^+ \rightarrow \mu^+ \nu) =$ 11.5±2.0, SM=9.72,

consistent with lepton universality

EPS Manchester, July 19 – 25, 2007

 $D^+ \rightarrow \mu^+ \nu$

Comparisons with Theory

We are consistent with most models, more precision needed Using Lattice ratio find $|V_{cd}/V_{cs}|=0.2166$

 ± 0.020 (exp) ± 0.0017 (theory)

EPS Manchester, July 19 – 25, 2007

CLEO D _s $\rightarrow \mu\nu, \tau\nu \ (\tau \rightarrow \pi\nu)$ Final March07, 314/pb	⊢●Ⅰ		
CLEO D _s $\rightarrow \tau \nu \ (\tau \rightarrow e \nu \nu)$ prelim ICHEP 2006, 195/pb	H →● H	Artuso,	
CLEO average	H+H	PRL95, 251801 (2005)	——
	275 <u>+</u> 10 <u>+</u> 5	223 <u>+</u> 17 <u>+</u> 3	1.24 ±0.10±0.03
Unquenched LQCD Follana, arXiv:0706.172 [hep-lat]	H.	H	HI .
Unquenched LQCD Aubin, PRL 95, 122002 (2005)	⊢●⊣	HeH	⊢ ●-1
Quenched L. (QCDSF) Ali Khan, hep-lat/0701015	HOH	⊢●⊣	101
Quenched L. (Taiwan) Chiu, PLB 624, 31 (2005)	⊢⊷н	HOH	HeH
Quenched L. (UKQCD) Lellouch, PRD 64, 094501 (2001)	HOH	HOH	HOH
Quenched Lattice Becirevic, PRD 60, 074501 (1999)	⊨●+	H+H	
QCD Sum Rules Bordes, hep-ph/0507241	⊢●→	⊢●⊣	ю
QCD Sum Rules Narison, hep-ph/0202200	⊢●−1	⊢●⊣	HeH
Quark Model Ebert, PLB 635, 93 (2006)	•	•	•
Quark Model Cvetic, PLB 596, 84 (2004)	⊢ ●−1	⊢ ●-1	•
Light Front QM Linear Choi, hep-ph/0701263	•	•	•
Light Front QM HO Choi, hep-ph/0701263	•	•	•
Potential Model Wang, Nucl. Phys. A744, 156 (2004)	•	•	•
Light Front QCD Salcedo, Braz. J. Phys. 34, 297 (2004)	•	•	•
Isospin Splittings Amundsen, PRD 47, 3059 (1993)			
	200 250 300	200 300	0 1 1.2 1.4

Comparison with Previous Experiments

TABLE VI: These results compared with previous measurements. Results have been updated for new values of the D_s lifetime. ALEPH uses both measurements to derive a value for the decay constant.

Exp.	Mode	\mathcal{B}	$\mathcal{B}_{\phi\pi}$ (%)	$f_{D_s^+}$ (MeV)
CLEO-c	combined	-		$275 \pm 10 \pm 5$
CLEO	$\mu^+\nu$	$(6.2 \pm 0.8 \pm 1.3 \pm 1.6)10^{-3}$	3.6 ± 0.9	$273 \pm 19 \pm 27 \pm 33$
BEATRICE	$\mu^+\nu$	$(8.3 \pm 2.3 \pm 0.6 \pm 2.1)10^{-3}$	3.6 ± 0.9	$315\pm43\pm12\pm39$
ALEPH	$\mu^+\nu$	$(6.8 \pm 1.1 \pm 1.8)10^{-3}$	3.6 ± 0.9	$285 \pm 19 \pm 40$
ALEPH	$\tau^+\nu$	$(5.8 \pm 0.8 \pm 1.8)10^{-2}$		
OPAL	$\tau^+\nu$	$(7.0 \pm 2.1 \pm 2.0)10^{-2}$?	$286 \pm 44 \pm 41$
L3	$\tau^+\nu$	$(7.4 \pm 2.8 \pm 1.6 \pm 1.8)10^{-2}$?	$302 \pm 57 \pm 32 \pm 37$
BaBar	$\mu^+\nu$	$(6.5\pm0.8\pm0.3\pm0.9)10^{-3}$	$4.8 \pm 0.5 \pm 0.4$	$279 \pm 17 \pm 6 \pm 19$

CLEO-c is most precise result to date for both $\rm f_{Ds}$ & $\rm f_{D^+}$

The End

CLEO D_S⁺ Results at 4170 MeV

Since e⁺e⁻→D_S*D_S, the D_S from the D_S* will be smeared in beamconstrained mass.

$$M_{BC}^2 = E_{beam}^2 - \sum \vec{p}_i^2$$

 ∴cut on M_{BC} & plot invariant mass (equivalent to a p cut)
 We use 314 pb⁻¹ of data

Beam Constrained Mass (GeV)

#Tags: $D_s + \gamma$ • Compute MM*2 $MM^{*2} = (E_{CM} - E_{D_s} - E_{\gamma})^2 - (-\vec{p}_{D_s} - \vec{p}_{\gamma})^2$ in each individual mode • Use $D_s * D_s$ sample to measure shape of tail

Sum of $D_S^+ \rightarrow \mu^+ \nu + \tau^+ \nu$, $\tau \rightarrow \pi^+ \nu$

As we will see, there is very little background present in any sub-sample for $MM^2 < 0.2$ GeV²

