

Decays of Charmed Hadrons at Belle

V.Balagura (ITEP), EPS HEP 2007, July 19, 2007

- 1. Measurement of $B(D_s^+ \to \mu^+ \nu_{\mu})$.
- 2. (a) Observation of $D_{s1}(2536)^+ \rightarrow D^+\pi^-K^+$,
 - (b) angular decomposition of S- and D-waves in $D_{s1}(2536)^+ \rightarrow D^{*+}K_S^0$.

$$D_s^+ o \mu^+
u_\mu$$

Latice QCD $\Rightarrow f_{B_d}$ and $f_{B_s} \Rightarrow \underline{B_d}$ and $\underline{B_s}$ mixing constraints on CKM unitarity triangle. Latice QCD can be checked and improved in the charm sector using measured f_D and $f_{D_s^+}$.

$$\Gamma(D_s^+ \to l^+ \nu_l) = \frac{G_F^2}{8\pi} f_{D_s^+}^2 m_l^2 M_{D_s^+} \left(1 - \frac{m_l^2}{M_{D_s^+}^2}\right)^2 |V_{cs}|^2$$

Experimentally $D_s^+ \to \mu^+ \nu_{\mu}$ is the best mode

 $\Gamma(D_s^+ \to e^+ \nu_e) : \Gamma(D_s^+ \to \mu^+ \nu_\mu) : \Gamma(D_s^+ \to \tau^+ \nu_\tau) \approx 2.5 \cdot 10^{-5} : 1.0 : 9.7.$

$D_s^+ o \mu^+ u_\mu$

 $e^+e^- \rightarrow D_s^{*+}(DKX), \ D_s^{*+} \rightarrow D_s^+\gamma, \quad X = k\pi^{\pm} \text{ or } ((k-1)\pi^{\pm})\gamma,$

 $k \leq 5$. Everything in red (DKX and γ from D_s^{*+}) is fully reconstructed,

 D_s^+ peak is searched for in the recoil mass spectrum.

Signal shape and efficiency depend on number of prompt particles $n_X = k + 3 = 3, ... 8$ \Rightarrow number of D_s^+ 's N is counted in n_X bins, $N = \sum N_{n_X^{\text{rec}}}$. Prompt π^{\pm} or γ may be not reconstructed $\Rightarrow k_{\text{rec}} \leq k_{\text{true}}, N_{n_X^{\text{rec}}} = \sum M_{n_X^{\text{rec}}, n_X^{\text{true}}} \times N_{n_X^{\text{true}}}$ \Rightarrow cross feeds M between n_X bins is obtained from MC and is taken into account in the fit.

background – from WS or from generic MC to cross check. $32100 \pm 870 \pm 1210$ ev.

background – by exchanging $\mu^+ \rightarrow e^+$, ratio of μ^+/e^+ efficiencies – from MC. $169 \pm 16 \pm 8 \text{ ev.}$

	\underline{D}		
	$B(D_s^+ \to \mu \nu_\mu), \ \times 10^{-3}$	$f_{D_s^+},{ m MeV}$	•
	Preliminary Bel	•	
	$6.44 \pm 0.76 \pm 0.52$	$275 \pm 16 \pm 12$	
	Previous re		
PDG'06	6.1 ± 1.9	294 ± 27	
BaBar	$6.74 \pm 0.83 \pm 0.26 \pm 0.66_{\phi\pi}$	$283 \pm 17 \pm 7 \pm 14_{\phi\pi}$	PRL 98, 121801 (2007)
	(last erro	or from $B(D_s^+ \to \phi \pi^+))$	
CLEO-c	$5.94 \pm 0.66 \pm 0.31$	$264 \pm 15 \pm 7$	hep-ex/0704.0437
\rightarrow Bollo	accuracy is similar to CI FO	7	

 \Rightarrow Belle: accuracy is similar to CLEO-c,

direct measurement of absolute $B(D_s^+ \to \mu^+ \nu_{\mu})$ without norm. channel

C.Davies at EPS-2005: "There has been a revolution in LQCD..." Unquenched LQCD with $n_f = 2+1$ [PRL 95, 122002 (2005)]: $f_{D_s^+} = 249 \pm 3 \pm 16$ MeV.

Observation of $D_{s1}(2536)^+ \rightarrow D^+ \pi^- K^+$

 $\begin{aligned} D_{s1}(2536)^+: \ J^P &= 1^+, \ j_l = 3/2; \text{ known modes } D^{*+}K^0_S, \ D^{*0}K^+, \ D^+_s\pi^+\pi^-. \\ D^+\pi^- \text{ cannot come from } D^{*0}: \ M_{D^0} + M_{\pi^-} > M_{D^{*0}}. \end{aligned}$

$$rac{B(D^+_{s1} o D^+ \pi^- K^+)}{B(D^+_{s1} o D^{*+} K^0)} = 3.17 \pm 0.17 \pm 0.36\%$$

Partial Wave Analysis (PWA) of $D_{s1}(2536)^+ \rightarrow D^{*+}K_S^0$

HQET:
$$D_{s1}^{(j_l=3/2)} \to D^*K$$
 D-wave
 $(j_l=1/2) \to D^*K$ S-wave (but $D_{s1}(2460)^+ \to D^*K$ is energetically forbidden)
Energy release in $D_{s1}(2536)^+ \to D^*K$ is small \Rightarrow D-wave is suppressed

 \Rightarrow small mixing between $j_l = 3/2$ and $j_l = 1/2$ states

$$egin{array}{rcl} |D_{s1}(2460)^+ &=& \cos heta \; |(j_l\!=\!1/2)
angle + \sin heta \; |(j_l\!=\!3/2)
angle \ |D_{s1}(2536)^+ &=& -\sin heta \; |(j_l\!=\!1/2)
angle + \cos heta \; |(j_l\!=\!3/2)
angle \end{array}$$

can give a sizeable contribution to $D_{s1}(2536)^+$ width.

Belle'03,04: $\frac{B(D_{s1}(2460) \rightarrow D_s^{*+}\gamma)}{B(D_{s1}(2460) \rightarrow D_s^{+}\gamma)} = 0.31 \pm 0.14$ (B decays and e^+e^- annihilation) $\Rightarrow \tan^2(\theta + \theta_0) = 0.8 \pm 0.4$, where $\tan^2(\theta_0) = 2$

CLEO'94: first attempt to decompose S- and D-waves in $D_1(2420)^{0,+} \to D^{*+}\pi^-, \ D^0\pi^+$ [PLB **331**, 236; PLB **340**, 194].

Currently no results on $D_{s1}(2536)^+$ exist.

Moreover CLEO method did not allow to perform complete PWA of the decay.

Partial Wave Analysis (PWA) of $D_{s1}(2536)^+ \rightarrow D^{*+}K^0_S$

 ρ_{00} - longitudinal polarization, $\sqrt{\mathbf{R}_{\Lambda}} \exp(i\xi) = \frac{A_{1,0}}{A_{0,0}} = z$, $A_{1,0}$ and $A_{0,0}$ correspond to D^{*+} helicities ± 1 and 0.

 $\frac{d^3N}{d(\cos\alpha) \ d\beta \ d(\cos\gamma)} \to \rho_{00}, \ z = \sqrt{R_{\Lambda}} \exp(i\xi) \to D/S = \sqrt{2} (z-1)/(1+2z) = \sqrt{\Gamma_D/\Gamma_S} \exp(i\eta).$ Last interference term with the phase ξ vanishes after integration over any angle. It does not appear in one- and two-dimensional distributions $\frac{dN}{d(\cos\gamma)}, \ \frac{d^2N}{d(\cos\alpha) \ d(\cos\gamma)}$ studied by CLEO in 1994 for $D_1(2420)$ meson.

$$rac{ ext{PDF for 3-D Unbinned ML Fit}}{\mathcal{P}(lpha, eta, \gamma) = (1 - f_b) \cdot rac{d^3N}{d(\cos lpha) \ deta \ d(\cos \gamma)} \cdot rac{\epsilon(lpha, eta, \gamma)}{\langle \epsilon
angle_{ ext{avr}}} + f_b \cdot \mathcal{P}_{bck}(lpha, eta, \gamma).$$

Background subtracted and efficiency corrected projections: data (•) vs. 3-D fit results

3-D Fit Quality and Results

PDF is made of $\frac{d^3N}{d(\cos \alpha) \ d\beta \ d(\cos \gamma)} \bigoplus$ efficiency \bigoplus background. 1) $\frac{d^3N}{d(\cos \alpha) \ d\beta \ d(\cos \gamma)}$ depends on fit parameters only quadratically or linearly; 2) efficiency is almost flat in all projections: $\epsilon = \text{const} \Rightarrow \text{results change by} \le 1/3\sigma_{\text{stat}};$ 3) background fraction $f_b = 9\%$ is small;

\Rightarrow fit is simple.

Fit of 1000 toy MC samples: no bias found. FCN is worse than in data in 33% of cases.

$$egin{aligned} A_{1,0}/A_{0,0} &= \sqrt{3.6 \pm 0.3} \exp\left(\pm i \cdot (1.27 \pm 0.16)
ight) \ D/S &= (0.63 \pm 0.07) \cdot \exp\left(\pm i \cdot (0.77 \pm 0.03)
ight) \end{aligned}$$

Contrary to HQET, <u>S-wave dominates:</u>

 $\Gamma_S/\Gamma_{
m total} = 0.72 \pm 0.05$

Longitudinal polarization in the region $x_P > 0.8$

 $ho_{00} = 0.490 \pm 0.013$

Fit in Bins of D_{s1}^+ Recoil Mass, $M_{\text{rec}} = \sqrt{(2E_{\text{beam}}^* - E_{D_{s1}^+}^*)^2 - (p_{D_{s1}^+}^*)^2}$

Parameters R_{Λ} and ξ are independent of M_{rec} within statistical errors \Rightarrow fixed to values from overall fit

Resolution: ~70 MeV/ c^2 at 2 GeV/ c^2 , 1/ M_{rec} dependence. Indication of two-body $e^+e^- \rightarrow D_{s1}^+X$, $X = D_s^+, D_s^{*+}, D_s^{**+}$.

 ρ_{00} : also some structure at low M_{rec} ; for $e^+e^- \rightarrow D_{s1}^+D_s^+$: low ρ_{00} , rises to ≈ 0.5 at higher M_{rec} .

Conclusions

1. First preliminary results on $D_s^+ \to \mu \nu_{\mu}$; systematics is to be thoroughly evaluated.

	$B(D_s^+ ightarrow \mu u_\mu), \ imes 10^{-3}$	$f_{D_s^+}^{},{ m MeV}$
Belle	$\boldsymbol{6.44 \pm 0.76 \pm 0.52}$	$275 \pm 16 \pm 12$
PDG'06	6.1 ± 1.9	294 ± 27
BaBar	$6.74 \pm 0.83 \pm 0.26 \pm 0.66_{\phi\pi}$	$f 283\pm 17\pm 7\pm 14_{\phi\pi}$
CLEO-c	$5.94 \pm 0.66 \pm 0.31$	$\bf 264 \pm 15 \pm 7$
Unquen. LQCD	$[PRL \ 95, \ 122002 \ (2005)]$	$249\pm3\pm16$

Accuracy is similar to LQCD, statistically limited.

2.(a) $\frac{\mathcal{B}(D_{s1}^+ \to D^+ \pi^- K^+)}{\mathcal{B}(D_{s1}^+ \to D^{*+} K^0)} = (3.17 \pm 0.17 \pm 0.36)\%, \text{ no clear resonant substructure.}$

(b) $D_{s1}(2536)^+ \rightarrow D^{*+}K_S^0$ PWA:

amplitude ratio $D/S = (0.63 \pm 0.07) \cdot \exp(\pm i \cdot (0.77 \pm 0.03))$ Contrary to HQET, <u>S-wave dominates:</u> $\Gamma_S/\Gamma_{\text{total}} = 0.72 \pm 0.05$ \Rightarrow mixing with $j_l = 1/2$ state $(D_{s1}(2460)^+)$.

(c) Spin of D_{s1}(2536)⁺ with x_P > 0.8 prefers to align transverse to momentum: ρ₀₀ = 0.490 ± 0.013. First measurement for P-wave c-meson in fragmentation.
HQET: ρ₀₀ = ²/₃(1 − w_{3/2}) [Phys. Rev. D 49, 3320 (1994)] ⇒ Falk-Peskin parameter w_{3/2} = 0.266 ± 0.019 for x_P > 0.8 ⇒ predictions for angular distributions of other j_l = 3/2 meson decays.

Backup Slides

$D_s^+ ightarrow \mu^+ u_\mu$ Signal and Background in MC

Mixing of $j_l = 1/2$ and $j_l = 3/2$ States

Some information on θ is obtained from the ratio of electromagnetic decay rates $D_{s1}(2460) \rightarrow D_s^+ \gamma$, $D_s^{*+} \gamma$, since only the 1P_1 state in $D_{s1}(2460)$ undergoes E1 transition to D_s^+ and only the 3P_1 state to D_s^{*+} . The bases $|j_l\rangle$ and $|^{2S+1}P_1\rangle$ are related by the rotation by the angle θ_0 , $\tan \theta_0 = -\sqrt{2}$. Therefore the angle between the bases $|D_s^+\rangle$ and $|^{2S+1}P_1\rangle$ is $\theta + \theta_0$.

$$\left|D_{s}^{+}\right
angle \xrightarrow{ heta} \left|j_{l}
ight
angle \xrightarrow{ heta_{0}} \left|\begin{smallmatrix} {}^{1}P_{1} \\ {}^{3}P_{1} \end{smallmatrix}
ight
angle \xrightarrow{ extsf{E1}} \left|\begin{smallmatrix} D_{s}^{+}\gamma \\ D_{s}^{*+}\gamma \end{smallmatrix}
ight
angle$$

Belle studied $D_{s1}(2460) \rightarrow D_s^+\gamma$, $D_s^{*+}\gamma$ decays using $D_{s1}(2460)$ from both B decays and from e^+e^- annihilation. The ratio of decay rates is found to be 0.4 ± 0.3 and 0.28 ± 0.17 , respectively. The average value is $\frac{B(D_{s1}(2460) \rightarrow D_s^{*+}\gamma)}{B(D_{s1}(2460) \rightarrow D_s^{+}\gamma)} = 0.31 \pm 0.14$. Following Y. Yamada *et.al*, PR C72, 065202 (2005) and taking into account the phase space difference between $D_s^+\gamma$ and $D_s^{*+}\gamma$, this gives the constraint

$$\tan^2(\theta+\theta_0)=0.8\pm0.4.$$

It should be compared with $\tan^2(\theta_0) = 2$ corresponding to the absence of the mixing.

Spin Alignment of D_{s1}^+ from e^+e^- Annihilation

Production of heavy mesons $(Q\bar{q})$ in HQET: A. Falk and M. Peskin, PR D49, 3320 (1994). The fragmentation process is so fast that the color magnetic forces do not have time to act and the spins of Q and \bar{q} are uncorrelated. Predictions for (D, D^*) :

1) D^* mesons are produced unpolarized.

Confirmed by CLEO in 1991, 1998 and checked also by HRS'87, TPC'91, OPAL'97, SLD'97.

2) D^* and D mesons are produced in fragmentation according to the number of helicity states in a 3:1 ratio.

However, average over e^+e^- , hadro-production, photo-production etc. experiments: $P_V = V/(V+P) = 0.594 \pm 0.010 \ll 0.75$ [A. David, PL B644, 224 (2007)].

There are no similar measurements for the P-wave states. Contrary to the (D, D^*) case, HQET predicts that $j_l = 3/2$ doublet can be produced aligned. The probabilities for the light degree of freedom to have helicity -3/2, -1/2, 1/2, 3/2 are expressed via one parameter $w_{3/2}$ as

$$\frac{1}{2}w_{3/2}, \ \frac{1}{2}(1-w_{3/2}), \ \frac{1}{2}(1-w_{3/2}), \ \frac{1}{2}w_{3/2},$$

respectively. By adding uncorrelated *c*-quark spin and resolving the $c\bar{s}$ system into 1^+ and 2^+ states, one can calculate their alignment.

For $j_l = 1/2$ doublets two helicity states should have equal probabilities due to P conservation. As a result all three helicity states of D^* and the fourth state of D should be equally populated.

For $D_{s1}(2536)^+$ the probability of zero helicity is $\rho_{00} = \frac{2}{3}(1 - w_{3/2})$. Perturbative QCD calculations give $w_{3/2} = 29/114 \approx 0.254$ [Y.-Q. Chen and M. Wise, PR D50, 4706 (1994)] and $\rho_{00} \approx 0.497$. ARGUS'89 analysis of angular distributions in $D_2^*(2460) \rightarrow D\pi$ decay gives an upper limit $w_{3/2} < 0.24$ at 90% CL. This is the only available experimental number in $j_l = 3/2$ charm sector. Once $w_{3/2}$ is measured, one can make definite predictions for the angular distributions of the remaining $j_l = 3/2$ meson decays (e.g. on the decays of $D_{s2}(2573)^+$ state). $j_l = 3/2$ mesons are the lowest states which can be used to perform first nontrivial tests of HQET in fragmentaion process.