D⁰ D⁰ Quantum Correlations, Mixing, and Strong Phases

Marina Artuso Syracuse University Representing the CLEO-c Collaboration

Charm as a probe of new physics

- Unique opportunities in three areas of investigation:
 - Mixing
 - CP violation
 - Rare decays
- Smoking gun or long distance effect?
 - Although all three phenomena suppressed in Standard Model, enhancement due to long distance effects may mimic new physics.

D⁰D⁰mixing

- the presence of d-type quarks in the loop makes the SM expectations for D°-D° mixing small compared with systems involving u-type quarks in the box diagram (no superheavy quark (t):
 - K° (50%), B° (20%) & B_s (50%)
- New physics in loops implies x =DM/G>> y °DG /2G
- $R_{M}^{0}(x^{2}+y^{2})/2$

• long range effects complicate predictions

Predictions for D-Mixing

compiled by H. Nelson, Lepton-Photon 1999

- Although Standard Model contributions are difficult to pin down, D mixing can constrain several "Beyond the Standard Model" scenarios:
 - Many models poorly tested in +2/3 quark sector
 - Many models put the flavor violation into upquark sector in order to satisfy K mixing P large effects in D mixing

Catalogue of New Physics Contributions

- Golowich, Hewett, Pakvasa, Petrov arXiv:0705.3650

D mixing current status

Exploiting the quantum coherence of the initial state

- At a center-of-mass energy close to the DD threshold, the pair is produced in a C=-1 state (at the $\psi(3770)$ or in a C=1 state (at an energy above the γ DD threshold). The corresponding Quantum Correlation between the D and D final states affects:
 - Final states produced by mixing or Doubly Cabibbo Suppressed Decays (e.g. $K^+\pi^-K^+\pi^-$) [e.g. for C=-1 no interference between mixing and DCSD because of the DD wavefunction is antisymmetric]
 - Final states containing a lepton and a $K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$
 - Final states containing a lepton and a CP eigenstate

Exploiting the quantum coherence of the initial state

	Final state	Г (С=-1)	Г (С=+1)	hep-ph/0103110 Gronau, Grossman & Rosner	
	K⁻π⁺K⁻π⁺	A ⁴ (x ² +y ²)/2	$4A^{4}(r^{2}+r\gamma'+3/8(\chi^{2}+\gamma^{2}))$		
	K⁻π⁺K⁺π⁻	A ⁴ (1-2r ² cos2δ-1/2(x ² -y ²))	δ-1/2(x²-y²)) A ⁴ (1+2r²cos2δ-+4rγ- 3/2(x²-y²))		
P.	K ⁻ π ⁺ S _ζ	$A^2A_{S\zeta}^2(1+2\zeta\cos\delta)$	$A^{2}A_{S\zeta}^{2}(1-2\zeta\gamma)$) Linear in y	
ige	$K^-p^+\ell^-$	$A^{2}A_{l^{2}}[1-1/2(x^{2}-y^{2})]$	$A^2 A_{\mathcal{C}}^2 [1 + 2r\tilde{y} - \frac{3}{2}($	$x^2 - y^2)]$	
	$K^- p^+ \ell^+$	$A^{2}A_{\ell^{+}}^{2}[r^{2}+\frac{1}{2}(x^{2}+y^{2})]$	$A^{2}A_{\ell^{+}}^{2}[r^{2}+2ry'+\frac{3}{2}]$	$\frac{3}{2}(x^2+y^2)]$	
	Κ ⁻π⁺S _ζ	$A_{S_z}^{2}A_{\ell^+}^2(1+y^2)$	$A_{S_z}^{2}A_{\ell^+}^2(1-2z)$	$z y + 3y^2$)	

Quantum Correlations at the y(3770)

-	

- The Quantum Correlation Analysis (TQCA)
- Due to quantum correlation between D⁰ and D⁰, not all final states allowed.
- Two paths to K⁻π⁺ vs K⁺π⁻ interfere and thus the rate is sensitive to DCS & strong phase
- Time integrated rate depends on both $\cos \delta_{K\pi}$ and mixing parameter $y = \Delta \Gamma / 2\Gamma$
- $(K^-\pi^+ K^-\pi^+)$ forbidden without D mixing [interference with DCSD is forbidden because antisymmetry of the $\psi(3770)$ wave function]

Marina Artuso EPS 2007

July 19, 2007

Experimental Technique

- Use efficiency corrected yields for single tags (only one D⁰ reconstructed) & double tags (both D⁰ and D⁰ decays reconstructed) in a leastsquares fit developed to extract exclusive hadronic branching fractions to determine:
 - \mathcal{N} (number of $D^0\overline{D}^0$ pairs)
 - \bullet The mixing parameters y and R_{M}
 - \bullet The strong phase $\text{cos}\delta_{\textbf{k}\pi}$
 - 6 exclusive branching fractions

More details

- Data sample use in this analysis 281 pb⁻¹ at ψ(3770) center-of-mass energy
- Modes used:
 - Hadronic flavored states (K⁻π⁺, K⁺π⁻)
 - CP+ modes (K⁻K⁺, π^{-} $\pi^{+}, K_{s}\pi^{0}\pi^{0}$)
 - CP- modes ($K_S \pi^0$)
 - Inclusive semileptonic decays
- Procedure tested with CP correlated Monte Carlo Marina Artuso EPS 2007

Hadronic Single Tags

- Identify the final state with $\Delta E \equiv E_{\text{beam}} - E_{\text{D}}, M_{BC} \equiv \sqrt{E_{\text{beam}}^2 - |p_D|^2}$
- Cut on △E, fit M_{BC} distribution to signal and background shapes.
- Efficiencies from (uncorrelated) DD Monte Carlo simulations.
- Peaking backgrounds for:
 - $K\pi$ from K/π particle ID swap.
 - Modes with $K^0{}_S$ from non-resonant $\pi^+\pi^-$

Hadronic Double Tags

- Cut and count in M_{BC1} vs.
 M_{BC2} plane, define four sidebands.
- Uncorrelated background: one (or, occasionally both) D incorrectly reconstructed.
 - Signal/sideband scale factor derived from ST fits.

(GeV)

TQCA

Data clearly favors QC interpretation showing constructive and destructive interference and no effect as predicted

TQCA fit methodology

- Fit inputs: 6 single tag yields , 14 hadronic double tag yields, 10 semileptonic double tag yields, efficiencies, crossfeeds, background branching fractions and efficiencies.
- $\chi^2 = 17.0$ for 19 d.o.f. (C.L. = 59%).
- Limit on C=+1 contamination:
 - Fit each yield to sum of C=-1 & C=+1 contribs.
 - Include CP+/CP+ and CP-/CP- DTs in fit.
 - No significant shifts in fit parameters.
 - C=+1 fraction = 0.06 ± 0.05 ± ?.

Prelim Results - update soon

Fit uncertainties statistical only

Parameter	CLEO-c TQCA	Other input	Ref.
У	-0.058±0.066	0.012±0.0032	HFAG y _{CP}
R _M	(1.74±1.47)×10 ⁻³	(0.21±0.11) ×10 ⁻³	HFAG
$cos\delta_{K\pi}$	1.09±0.66		
B(D→Kπ)	(3.80±0.029)%	(3.80±0.07)%	PDG 06 fit
B(D→KK)	(0.357±0.029)%	(0.389±0.012)%	PDG 06 fit
B(D→ππ)	(0.125±0.011)%	(0.136±0.003)%	PDG 06 fit
$B(D \rightarrow K_s \pi^0 \pi^0)$	(0.932±0.087)%	(0.89±0.41)%	PDG 06
$B(D \rightarrow K_s \pi^0)$	(1.27±0.09)%	(1.14±0.12)%	PDG 06 fit
$B(D^0 \rightarrow Xev)$	(6.21±0.42)%	(6.46±0.21)%	CLEO-c

Systematic Uncertainties

- Mixing/DCS parameters determined from ST/DT double ratios:
 - Correlated systematic errors cancel (tracking/ π^0/K^0_s efficiencies).
- Uncorrelated systematic uncertainties included in the fit:
 - Yield fit variation.
 - Possible contribution from C=+1 initial state.
 - Can limit with CP+/CP+, CP-/CP- double tags—forbidden for C=-1.
 - Data provides self-calibration of initial state.
 - Signal yields have peaking backgrounds of opposite CP or flavor \rightarrow bias in estimates from uncorrelated MC.
 - Possible bias from CP-correlated MC test.
- Currently, $\sigma_{syst} \sim \sigma_{stat}$.

Concluding remarks

- These measurements are affected by x, y, the strong phase $\delta_{k\pi}$, and the CPV phase φ .
- A detailed comparison between the Belle and BaBar evidence for $D^0\overline{D}^0$ mixing shows the importance of more information of the strong phase $\delta_{k\pi}$ [Nir-hep-ph/0703235v2...]
- More data will be added (~300 pb⁻¹ available at 3.77 GeV CM energy) + ~ 300 pb⁻¹ at 4.17 GeV CM energy may be used to investigate C=+1 D⁰D⁰ pairs.

Backup slides

Marina Artuso EPS 2007

Hadronic Double tags Numbers

	$K^-\pi^+$	$K^+\pi^-$	K [−] K ⁺	$\pi^-\pi^+$	Κ ⁰ _S π ⁰ π ⁰	Κ ⁰ ₅ π ⁰	Yields
	2.5 ± 0.4	622 ± 7	62.3 ± 2.1	25.3 ± 1.3	31.2 ± 1.4	78.3 ± 2.3	∠ - _ +
	2.0 ± 0.4	599 ± 25	70.6 ± 8.4	24.0 ± 4.9	38.7 ± 6.2	90.4 ± 9.5	
		2.7 ± 0.4	64.7 ± 2.1	30.6 ± 1.4	32.3 ± 1.5	85.0 ± 2.4	V+ ~ -
		2.0 ± 1.4	53.0 ± 7.3	24.3 ± 5.0	37.6 ± 6.2	77.0 ± 8.8	N M
			5.2 ± 0.4	4.5 ± 0.3	5.7 ± 0.4	16.0 ± 0.6	V-V+
			-2.2 ± 1.9	0.1 ± 0.9	1.6 ±1.3	39.6 ± 6.3	NN
				1.1 ± 0.2	2.2 ± 0.2	5.8 ± 0.4	$\pi^-\pi^+$
				0.2 ± 1.4	1.6 ± 1.3	14.0 ± 3.7	
					1.2 ± 0.2	7.3 ± 0.4	V0 -0-0
					1.0 ± 1.0	19.0 ± 4.4	NSNON
Nc	No-QC expectation				9.7 ± 0.5	k 0 - 0	
Observed in data					3.0 ± 1.7	K° SN°	