

D^0 mixing at Belle

Marko Starič J. Stefan Institute, Ljubljana, Slovenia

19-25 July 2007 HEP 2007, Manchester, England

- Introduction
- Decays to CP eigenstates (lifetime difference measurement)
- Self-conjugate decays (time-dependent Dalitz plot analysis)
- Conclusions

Introduction .

Mixing between a neutral heavy-flavoured meson and its anti-particle is possible, if flavour eigenstates are not the same as mass eigenstates (masses m₁, m₂, widths Γ₁, Γ₂)

$$|D^0_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}{}^0\rangle$$

Time evolution is governed by mass and lifetime differences

$$x = \frac{\Delta m}{\Gamma}$$
 $y = \frac{\Delta \Gamma}{2\Gamma}$

• A
$$D^0$$
 at $t = 0$ evolves as:

$$|D^{0}(t)\rangle = e^{-(\Gamma/2 + im)t} \left[\cosh(\frac{y + ix}{2}\Gamma t)|D^{0}\rangle + \frac{q}{p}\sinh(\frac{y + ix}{2}\Gamma t)|\overline{D}^{0}\rangle\right]$$

• Since D^0 mixing is small ($|x|, |y| \ll 1$) expand to the lowest order in x, y. The decay rate of initially produced D^0 to a final state $|f\rangle$ is:

$$\frac{dN_{D^0 \to f}}{dt} \propto |\langle f|\mathcal{H}|D^0(t)\rangle|^2 = e^{-\Gamma t} \left|\langle f|\mathcal{H}|D^0\rangle + \frac{q}{p} (\frac{y+ix}{2}\Gamma t)\langle f|\mathcal{H}|\overline{D}^0\rangle\right|^2$$

Decay time distribution of different final states sensitive to different combinations of mixing parameters x and y.

Experimental method ____

- $D^{*+} \rightarrow \pi^+ D^0$
 - \triangleright tag the flavor of D^0/\overline{D}^0 at production
 - background suppression
- D^0 proper decay time t measurement:

$$t = rac{l_{dec}}{ceta\gamma} \;, \qquad eta\gamma = rac{p_{D^0}}{M_{D^0}}$$

 σ_t ... decay-time uncertainty (from vtx cov. matrices)

- Measurements performed at $\Upsilon(4S)$ ▷ to reject D^{*+} from B decays: $p_{D^{*+}}^{CMS} > 2.5 \ GeV/c$
- **Observables:**

$$m = m(K\pi)$$

$$q = m(K\pi\pi_s) - m(K\pi) - m_{\pi}$$

 $_ D^0 \rightarrow K^+ K^-, \ \pi^+ \pi^-$ (540 fb⁻¹) $_$

Decays to CP eigenstates $K^+K^-, \pi^+\pi^-$

PRL 98, 211803 (2007)

• Measurement of lifetime difference between $D^0 \rightarrow K^- \pi^+$ and $K^+ K^-, \pi^+ \pi^-$

▷ mixing parameter:

$$y_{CP} = \frac{\tau(K^- \pi^+)}{\tau(K^+ K^-)} - 1$$

 \triangleright in CP conservation limit: $y_{CP} = y = \Delta \Gamma / 2\Gamma$

♦ If CP not conserved, difference in lifetimes of $D^0/\overline{D}^0 \to K^+K^-, \pi^+\pi^-$

▷ CP violating parameter:

$$A_{\Gamma} = \frac{\tau(\overline{D}^0 \to K^- K^+) - \tau(D^0 \to K^+ K^-)}{\tau(\overline{D}^0 \to K^- K^+) + \tau(D^0 \to K^+ K^-)}$$

$$\triangleright y_{CP} = y \cos \phi - \frac{1}{2} A_M x \sin \phi$$
$$\triangleright A_{\Gamma} = \frac{1}{2} A_M y \cos \phi - x \sin \phi$$

(S. Bergmann et.al., PLB 486, 418 (2000))

$_ D^0 \rightarrow K^+ K^-, \ \pi^+ \pi^-$ (540 fb⁻¹) $_$

Lifetime fit

Parameterization of proper decay time distribution

 $\frac{dN}{dt} = \frac{N}{\tau}e^{-t/\tau} * R(t) + B(t)$

Resolution function

- \triangleright constructed from normalized distribution of event proper time uncertainty σ_t
- \triangleright ideally, σ_t of event represents uncertainty with Gaussian p.d.f
- \triangleright examining pulls \rightarrow p.d.f.=sum of 3 Gauss.

$$R(t) = \sum_{i=1}^{n} f_i \sum_{k=1}^{3} w_k G(t; \sigma_{ik}, t_0) , \qquad \sigma_{ik} = s_k \sigma_k^{pull} \sigma_i$$

$$\sigma_t$$
 distribution for $D^0 \to K^- \pi^+$

▶ R(t) studied in detail with $D^0 \rightarrow K\pi$ and special MC samples - also in changing running conditions (two different SVD, small misalignments)

$D^0 \to K^+ K^-, \ \pi^+ \pi^-$ (540 fb⁻¹) ____

Cross-checks

- MC: $y_{CP}(\text{out}) y_{CP}(\text{input}) < 0.04\%$ for large range of input values
- y_{CP} independent of resolution function parameterization:

R(t) = single Gaussian: $\Delta \tau = 3.5\%$, $\Delta y_{CP} = 0.01\%$

✤ Exchanging data side band with signal window background from tuned MC: $\Delta y_{CP} = -0.04\%$

Systematics

source	y_{CP}	A_{Γ}
acceptance	0.12%	0.07%
equal t_0 assumption	0.14%	0.08%
mass window position	0.04%	0.003%
difference btw. background and side bands	0.09%	0.06%
difference btw. final states in opening angle	0.02%	
background parameterization	0.07%	0.07%
resolution function	0.01%	0.01%
analysis cuts	0.11%	0.05%
binning	0.01%	0.01%
total	0.25%	0.15%

 $_ D^0 \rightarrow K^0_{s} \pi^+ \pi^-$ Dalitz (540 fb⁻¹) $_$ Self-conjugate decays $K_s^0 \pi^+\pi^$ arXiv:hep-ex/0704.1000v2 (submitted to PRL) Different decays identified through Dalitz plot analysis CF: $D^0 \rightarrow K^{*-}\pi^+$ DCS: $D^0 \rightarrow K^{*+}\pi^-$ **CP:** $D^0 \rightarrow \rho^0 K_s^0$ Matrix element is Dalitz space dependent; for initially produced $|D^0\rangle$: $\mathcal{M}(m_{-}^{2}, m_{+}^{2}, t) = \mathcal{A}(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) + e_{2}(t)}{2} + \frac{q}{n} \overline{\mathcal{A}}(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) - e_{2}(t)}{2}$ where $m_{\pm}^2 = m^2 (K_s^0 \pi^{\pm})$ and $e_{1,2}(t) = e^{-i(m_{1,2} - i\Gamma_{1,2}/2)t}$ • Amplitudes $\mathcal{A}(\overline{\mathcal{A}})$ for $D^0(\overline{D}^0)$ decays parameterized as a sum of quasi-two-body amplitudes + non-resonant contribution • Decay rate $dN/dt \propto |\mathcal{M}(m_{-}^2, m_{+}^2, t)|^2$ contains terms $\exp(-\Gamma t)\cos(x\Gamma t), \quad \exp(-\Gamma t)\sin(x\Gamma t), \quad \exp[-(1\pm y)\Gamma t]$ \bullet With time-dependent Dalitz plot analysis both mixing parameters (x and y) can be measured.

$- D^0 \rightarrow K_s^0 \pi^+ \pi^-$ Dalitz (540 fb⁻¹) ____

Dalitz projection of fit

	· · · · · · · · · · · · · · · · · · ·					-	-
-{;			ా ట 8000 ్		Resonance	Amplitude	Phase (deg)
ev²/o		-	7000		$K^{*}(892)^{-}$	1.629 ± 0.005	134.3 ± 0.3
0) 2.6 2		-	S 6000	A .	$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5
2		-	SE 5000		$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7
			<u>۵</u>	1	$K^{*}(1410)^{-}$	0.65 ± 0.02	111 ± 2
1.5			3000		$K^{*}(1680)^{-}$	0.60 ± 0.05	147 ± 5
1			2000		$K^{*}(892)^{+}$	0.152 ± 0.003	-37.5 ± 1.1
			1000		$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5
0.6	i		o 1		$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3
	0.5 1 1.5	2 2.5 3 m ² (GeV ² /c ⁴)	0.5 1 1.5 3	2 2.5 3 m ² (GeV ² /c ⁴)	$K^*(1410)^+$	0.333 ± 0.016	-102 ± 2
⁼ 0			50 Free Free Free Free Free Free Free Fre		$K^*(1680)^+$	0.73 ± 0.10	103 ± 6
35000			9000	-	$\rho(770)$	1 (fixed)	0 (fixed)
2.30000		-			$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9
Sta 25000	, 	1	5000 6000	2	$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9
ä 20000		1	ā ₅₀₀₀	A	$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4
15000	, ⊢ †		4000	*	$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1
10000			3000 -		$\rho(1450)$	0.72 ± 0.02	40.9 ± 1.9
5000			2000		σ_1	1.387 ± 0.018	-147 ± 1
	\sim			•	σ_2	0.267 ± 0.009	-157 ± 3
	0.5 1 1.5	2 2.5 3 m ² (GeV ² /c ⁴)	0 0.2 0.4 0.6 0.8 1 1.2	2 1.4 1.6 1.8 2 m ² _{ππ} (GeV ² /c ⁴)	NR	2.36 ± 0.05	$\overline{155\pm2}$

- Dalitz model: 18 different (BW) resonances and a non-resonant contribution
- Results (amplitudes, phases) in agreement with PRD73, 112009 (2006) (measurement of $\phi_3(\gamma)$)
- To test the scalar $\pi\pi$ contributions, K-matrix formalism is also used

Fit fraction 0.6227

0.0724

0.01330.00480.0002

0.00540.0047

 $\begin{array}{c} 0.0013 \\ 0.0013 \\ 0.0004 \\ 0.2111 \\ 0.0063 \end{array}$

0.0452

0.0162

0.01800.0024

 $\begin{array}{r} 0.0914 \\ 0.0088 \\ \hline 0.0615 \end{array}$

$D^0 \to K_s^0 \; \pi^+ \pi^-$ Dalitz (540 fb⁻¹) ____

Results

Assuming CP conservation

 $x = 0.80 \pm 0.29^{+0.09+0.10}_{-0.07-0.14} \%$ $y = 0.33 \pm 0.24^{+0.08+0.06}_{-0.12-0.08} \%$

most stringent limits on x up to now Cleo, PRD 72, 012001 (2005): $x = 1.8 \pm 3.4 \pm 0.6\%$ $y = -1.4 \pm 2.5 \pm 0.9\%$

Search for CP violation

- Dalitz plot fit separately for D^0 and $\overline{D}{}^0$
- ◆ fit parameters consistent for both samples
 → no direct CPV
- ✤ parameters |q/p| and $\phi = \arg(q/p)$ consistent with CP conservation

$$|q/p| = 0.86^{+0.30+0.10}_{-0.29-0.09}$$
 $\phi = (-14^{+16+5}_{-18-5})^{\circ}$

Conclusions _

::-

- Two recent Belle measurements of D^0 mixing parameters presented
- Evidence for D^0 mixing found in decays to CP eigenstates

 $y_{CP} = 1.31 \pm 0.32 \pm 0.25$ % (3.2 σ)

From time-dependent Dalitz plot analysis the most sensitive measurement of x up to now:

 $x = 0.80 \pm 0.29^{+0.13}_{-0.16}$ % (2.4 σ)

CPV search: no evidence found

Systematics

Experimental						
Source	Δx (%)	∆y (%)				
Event selection Dalitz dep. effi.	$+0.076 \\ -0.001 \\ +0.004$	$+0.018 \\ -0.078 \\ -0.009$				
Background	$^{+0.041}_{-0.068}$	$+0.077 \\ -0.086$				
Total	$^{+0.09}_{-0.07}$	$^{+0.08}_{-0.12}$				

Model dependence					
Source	∆x (%)	Δy (%)			
$M\&\Gamma$ errors	± 0.020	± 0.010			
$F_r = F_D = 1$	-0.031	+0.006			
$\Gamma(q^2) = \text{const.}$	-0.051	-0.041			
K-Matrix	± 0.073	± 0.058			
No NR	-0.015	+0.003			
No $K^*(1680)^+$	-0.003	-0.008			
No $ ho(1450)$	-0.005	-0.006			
$K_0^*(1430)$ DCS/CF	-0.103	+0.001			
$K_2^*(1430) \text{ DCS/CF}$	+0.069	-0.025			
$K^*(1410)$ DCS/CF	-0.016	+0.009			
Total	$+0.10 \\ -0.14$	$+0.06 \\ -0.08$			