Measurements of $|V_{ub}|$ and $|V_{cb}|$ at Belle

Christoph Schwanda Austrian Academy of Sciences Representing the Belle collaboration

$|V_{cb}|$ from inclusive decays B $\rightarrow X_c | v$

$$V_{ ext{CKM}} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

PRD 75, 032001 (2007) PRD 75, 032005 (2007) hep-ex/0611047

Theory of the measurement

 Semileptonic width in the framework of Heavy Quark Expansion

$$\begin{split} \Gamma_{sl}(B \to X_c \ell \nu) &= \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 |(1 + A_{ew}) A_{nonpert} A_{pert}| \\ & \inf_{\substack{\text{in } 1/\text{m}_b \\ \text{to } O(1/\text{m}_b^3)}} \inf_{\substack{\text{to } O(\alpha_s^2)}} A_{star} | \\ \end{split}$$

- Two separate calculations available:
 - kinetic running mass [P.Gambino, N.Uraltsev, Eur.Phys.J. C34, 181]
 - 1S mass [C.Bauer, Z.Ligeti, M.Luke, A.Manohar, Phys.Rev. D70, 094017]

b

Non-perturbative parameters in the 1/m_b expansion

	Kinetic scheme	1S scheme	
O(1)	m _b , m _c	m _b	Contain
O(1/m ² _b)	μ^2_{π} , μ^2_{G}	λ_1, λ_2	physics
O(1/m ³ _b)	ρ_{D}, ρ_{LS}	ρ ₁ , τ ₁₋₃	3

 Non-perturbative parameters can be measured from inclusive observables in B decays

Full reconstruction tag

 Electron energy and hadronic mass moments are measured using events in which the hadronic decay of one B is fully reconstructed in the modes B → D* {π,ρ,a₁}

- Advantages
 - Low backgrounds (small background uncertainty)
 - Good M_X^2 resolution (0.8 GeV²/c⁴)

Electron energy spectrum in B \rightarrow X_c I ν

(in the B rest frame)

140 fb⁻¹ Y(4S) data

Hadronic mass spectrum in B \rightarrow X_c I v

140 fb⁻¹ Y(4S) data

- The moments are calculated from the unfolded spectra to minimize $X_{c} \mbox{ I } \nu$ model dependence

electron energy moments as fct. of minimum lepton energy

$E_{\rm cut}[{ m GeV}]$	$M_1 [{ m MeV}]$	$M_2 \ [10^{-3} { m GeV^2}]$	$M_3 [10^{-3} { m GeV^3}]$	$M_4 \; [10^{-3} { m GeV^4}]$	$\Delta \mathcal{B} \ [10^{-2}]$
0.4	$1393.92\pm6.73\pm3.02$	$168.77 \pm 3.68 \pm 1.53$	$-21.04\pm1.93\pm0.66$	$64.153 \pm 1.813 \pm 0.935$	$10.44 \pm 0.19 \pm 0.22$
0.6	$1427.82\pm5.82\pm2.55$	$146.15 \pm 2.88 \pm 1.08$	-11.04 \pm 1.35 \pm 0.49	$45.366\pm1.108\pm0.548$	$10.07 \pm 0.18 \pm 0.21$
0.8	$1480.04\pm4.81\pm2.13$	$117.97 \pm 2.05 \pm 0.55$	$\textbf{-3.45} \pm 0.83 \pm 0.30$	$28.701 \pm 0.585 \pm 0.247$	$9.42\pm0.16\pm0.19$
1.0	$1547.76\pm3.96\pm1.45$	$88.17 \pm 1.42 \pm 0.36$	$0.83 \pm 0.49 \pm 0.20$	$15.962 \pm 0.302 \pm 0.142$	$8.41 \pm 0.15 \pm 0.17$
1.2	$1627.79\pm3.26\pm1.08$	$61.36 \pm 1.02 \pm 0.36$	$2.40\pm0.30\pm0.11$	$7.876 \pm 0.162 \pm 0.106$	$7.11\pm0.13\pm0.14$
1.4	$1719.96\pm2.58\pm1.10$	$38.99 \pm 0.71 \pm 0.24$	$2.33\pm0.16\pm0.07$	$3.314 \pm 0.080 \pm 0.055$	$5.52\pm0.11\pm0.11$
1.6	$1826.15\pm1.80\pm1.03$	$21.75 \pm 0.47 \pm 0.22$	$1.45\pm0.08\pm0.05$	$1.129 \pm 0.033 \pm 0.032$	$3.71\pm0.09\pm0.07$
1.8	$1943.18\pm0.93\pm1.16$	$10.14 \pm 0.28 \pm 0.18$	$0.68\pm0.03\pm0.04$	$0.283 \pm 0.010 \pm 0.017$	$1.93\pm0.06\pm0.04$
2.0	$2077.59\pm0.21\pm1.23$	$3.47 \pm 0.13 \pm 0.19$	$0.19\pm0.01\pm0.03$	$0.047 \pm 0.002 \pm 0.007$	$0.53\pm0.02\pm0.02$

hadronic mass moments as fct. of minimum lepton energy

$E^*_{ m min}~({ m GeV})$	$\langle M_X^2 angle ~({ m GeV}^2/c^4)$	$\langle (M_X^2 - \langle M_X^2 angle)^2 angle \; ({ m GeV}^4/c^8)$	$\langle M_X^4 angle ~({ m GeV}^4/c^8)$
0.7	$4.403 \pm 0.036 \pm 0.052$	$1.494 \pm 0.173 \pm 0.327$	$20.88 \pm 0.48 \pm 0.77$
0.9	$4.353 \pm 0.032 \pm 0.041$	$1.229 \pm 0.138 \pm 0.244$	$20.18 \pm 0.40 \pm 0.58$
1.1	$4.293 \pm 0.028 \pm 0.029$	$0.940 \pm 0.098 \pm 0.137$	$19.37 \pm 0.33 \pm 0.36$
1.3	$4.213 \pm 0.027 \pm 0.024$	$0.641 \pm 0.071 \pm 0.080$	$18.40 \pm 0.29 \pm 0.26$
1.5	$4.144 \pm 0.028 \pm 0.022$	$0.515 \pm 0.061 \pm 0.064$	$17.69 \pm 0.28 \pm 0.23$
1.7	$4.056 \pm 0.033 \pm 0.022$	$0.322 \pm 0.058 \pm 0.040$	$16.77 \pm 0.32 \pm 0.21$
1.9	$3.996 \pm 0.041 \pm 0.021$	$0.143 \pm 0.056 \pm 0.038$	$16.11 \pm 0.38 \pm 0.20$

(averaged over charged and neutral tags)

Input to the $|V_{cb}|$ fit

• Interpretation of the data using two sets of theoretical calculations

	1S scheme	kinetic scheme	
	$n=0~E_{\min}=0.6,~1.0,~1.4$	$n=0~E_{ m min}=0.4,~0.8$	
Lepton moments $\langle E_\ell^n \rangle_{E_{\min}}$	$n = 1 E_{\min} = 0.6, 0.8, 1.0, 1.2, 1.4$	$n = 1 E_{\min} = 0.4, 0.8, 1.0, 1.2 1.4$	
	$n=2~E_{\min}=0.6,~1.0,~1.4$	$n=2~E_{\min}=0.4,~0.8,~1.0,~1.2~1.4$	
	$n=3~E_{ m min}=0.8,~1.2$	$n = 3 E_{\min} = 0.4, 0.8, 1.0, 1.2 1.4$	
Hadron moments $\langle M_X^{2n} \rangle_{E_{\min}}$	$n=1\ E_{\rm min}=0.7,1.1,1.3,1.5$	$n=1\ E_{\rm min}=0.7,\ 0.9,\ 1.1,\ 1.3$	
	$n=2~E_{\min}=0.7,~0.9,~1.3$	$n=2\ E_{\rm min}=0.7,\ 0.9,\ 1.1,\ 1.3$	
Photon moments $\langle E_{\gamma}^n \rangle_{E_{\min}}$	$n=1~E_{ m min}=1.8,~2.0$	$n = 1 E_{\min} = 1.8, 1.9, 2.0$	
	$n=2~E_{ m min}=1.8,~2.0$	$n=2~E_{\min}=1.8,~1.9,~2.0$	

- Points with $E_{min} > 1.5 \text{ GeV} (X_c | v)$ and $E_{min} > 2 \text{ GeV} (X_s \gamma)$ are excluded for theoretical reasons
- Correlations of experimental and theoretical uncertainties are taken into account

Fit result in the 1S mass scheme

Green: fit error, red: theory error

 χ^2 /dof. = 5.7/17

Fit result in the kinetic running mass scheme

preliminary

yellow: theory error

 χ^2 /dof. = 17.8/24

11

Global fit to Belle data

Kinetic scheme ($X_c lv + X_s \gamma$ data)

 $|V_{cb}| = (41.93 \pm 0.65_{fit} \pm 0.07_{cs} \pm 0.63_{tb}) \times 10^{-3}$ $m_{b} = 4.564 \pm 0.076 \text{ GeV}$ χ^2 /dof. = 17.8/24 $m_c = 1.105 \pm 0.116 \text{ GeV}$

[hep-ex/0611047] preliminary

1S scheme ($X_c lv + X_s \gamma$ data) $|V_{cb}| = (41.49 \pm 0.52_{fit} \pm 0.20_{\tau}) \times 10^{-3}$ $m_{\rm b} = 4.729 \pm 0.048 \; GeV$ χ^2 /dof. = 5.7/17 $\lambda_1 = -0.30 \pm 0.04 \text{ GeV}^2$

The result for m_b compatible after scheme translation

$|V_{ub}|$ from exclusive semileptonic decays b—u

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

hep-ex/0610054

Theory of the measurement

• $B \rightarrow \pi I \nu$ decay rate

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_b^3} \lambda(q^2)^{3/2} |f_+(q^2)|^2 , \quad q^2 = (p_\ell + p_\nu)^2$$

- Need form factor shape and normalization for |V_{ub}|
- Available form factor calculations
 - Relativistic quark models
 - ISGW2 [Phys. Rev. D52, 2783 (1995)]
 - Light cone sum rules (LCSR) in the region $q^2 < 14 \text{ GeV}^2$
 - Ball-Zwicky [Phys. Rev. D71, 014015 (2005)]
 - Lattice QCD in the region $q^2 > 16 \text{ GeV}^2$
 - HPQCD [Phys. Rev. D73, 074502 (2006); erratum ibid.D75, 119906 (2007)]
 - FNAL [Nucl. Phys. Proc. Suppl. 140, 464 (2005)]

$B \rightarrow \pi | v$

- Fully reconstruct the hadronic decay of the other B
- Reconstruct π and I on the signal side
- Extract signal from missing mass squared distribution

$$\begin{split} \mathcal{B}(B^0 &\to \pi^- \ell^+ \nu) = \\ & (1.49 \pm 0.26(stat) \pm 0.06(syst)) \times 10^{-4} \\ \mathcal{B}(B^+ &\to \pi^0 \ell^+ \nu) = \\ & (0.86 \pm 0.17(stat) \pm 0.06(syst)) \times 10^{-4} \end{split}$$

[hep-ex/0610054] preliminary

48 ± 8 events 35 ± 7 events Data Data Signal Signal 8 /0.2 Ge b->ulnu background b->ulnu background π**0** π^+ Other backgrounds Other backgrounds st 25 15 10 2 Missing mass squared (GeV Missing mass squared (GeV LT / dq²/T_{tot} [10⁻⁴] 90 88 d I' / dq²/T_{tot} [10⁻⁴] 90 80 π0 π^+ 0.4 0.4 0.2 0.2 10 15 20 10 15 20 q2 (GeV2/c2) q² (GeV²/c²)

531 fb⁻¹ Y(4S) data

Extraction of |V_{ub}|

• Partial BF in bins of q²

preliminary

		$\Delta \mathcal{B}\left[10^{-4} ight]$		$\mathcal{B}\left[10^{-4} ight]$
Mode	$0 < q^2 < 8$	$8 < q^2 < 16$	$q^{2} > 16$	Sum
	$({ m GeV}^2/c^2)$	$({ m GeV}^2/c^2)$	$({ m GeV}^2/c^2)$	$({ m GeV}^2/c^2)$
$B ightarrow \pi^+ \ell \nu$	$0.50 \pm 0.14 \ \pm 0.02$	$0.68 \pm 0.18 \ \pm 0.03$	$0.31 \pm 0.12 \ \pm 0.01$	$1.49 \pm 0.26 \ \pm 0.06$
$B o \pi^0 \ell u$	$0.28 \pm 0.09 \ \pm 0.02$	$0.22 \pm 0.08 \ \pm 0.04$	$0.36 \pm 0.12 \ \pm 0.02$	$0.86 \pm 0.17 \ \pm 0.06$

• Extraction of $|V_{ub}|$ from respective q² regions

	q ² range	V _{ub} (10 ⁻³)
Ball-Zwicky	< 16 GeV ²	$3.56\pm0.29_{exp}\pm0.47_{th}\pm0.01_{\tau B0}$
HPQCD	> 16 GeV ²	$3.52\pm0.49_{exp}\pm0.48_{th}\pm0.01_{\tau B0}$
FNAL	> 16 GeV ²	$3.74 \pm 0.52_{exp} \pm 0.51_{th} \pm 0.01_{\tau B0}$

(assuming isospin symmetry)

Summary

• $|V_{cb}|$ inclusive [hep-ex/0611047] preliminary

	V _{cb} (10 ⁻³)
1S scheme	$41.49 \pm 0.52_{fit} \pm 0.20_{\tau B}$
kinetic scheme	$41.93 \pm 0.65_{fit} \pm 0.07_{\alpha s} \pm 0.63_{th}$

- $-\left|V_{cb}\right|$ has been measured to 1-2% precision using inclusive B decays
- Good agreement between different theoretical frameworks

Summary (cont.)

• $|V_{ub}|$ exclusive [hep-ex/0610054] preliminary

	q ² range	V _{ub} (10 ⁻³)
Ball-Zwicky	< 16 GeV ²	$3.56\pm0.29_{exp}\pm0.47_{th}\pm0.01_{\tau B0}$
HPQCD	> 16 GeV ²	$3.52 \pm 0.49_{exp} \pm 0.48_{th} \pm 0.01_{\tau B0}$
FNAL	> 16 GeV ²	$3.74 \pm 0.52_{exp} \pm 0.51_{th} \pm 0.01_{\tau B0}$

- Measurements of exclusive B \rightarrow X_u I v decays with full reconstruction tag are becoming available
- Statistically limited at the moment but background systematics are small compared to other tagging methods

Backup slides

The CKM mechanism

• The charged current interaction in the SM

$$-\mathcal{L}_{W^{\pm}} = \frac{g}{\sqrt{2}} \overline{u_{Li}} \gamma^{\mu} (V_{\text{CKM}})_{ij} d_{Lj} W^{+}_{\mu} + \text{h.c.}$$

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
[Kobayashi, Maskawa, Prog. Theor. Phys. 49, 652 (1973)]

 V_{CKM} is a unitary 3x3 matrix; it contains three real parameters and one complex phase

• Its unitarity is commonly represented by the unitarity triangle

Belle Detector

