

The 2007 Europhysics conference on High Energy Physics

Semileptonic *B* decays and the inclusive determination of |V_{ub}|

Paolo Giordano

University of Turin, Department of Theoretical Physics

- Status of $|V_{ub}|$ and of its inclusive determination.
- Description of a new theoretical framework:
 - General features
 - Perturbative and non-perturbative corrections in the kinetic scheme
 - Fermi motion effects
 - Problems in the high q² region
- Discussion of results:
 - Extraction of $|V_{ub}|$
 - Theoretical uncertainties
- Conclusions

$|V_{ub}|$, $|V_{cb}|$ and the Unitarity Triangle

- Semileptonic *B* decays allow for a measurement of $|V_{ub}|$ and $|V_{cb}|$ from tree-level processes.
- The ratio $|V_{ub}/V_{cb}|$ provides an important constraint on the Unitarity Triangle

$|V_{ub}|$, $|V_{cb}|$ and the Unitarity Triangle

- Semileptonic *B* decays allow for a measurement of $|V_{ub}|$ and $|V_{cb}|$ from tree-level processes.
- The ratio $|V_{ub}/V_{cb}|$ provides an important constraint on the Unitarity Triangle

Inclusive determination of Vub

-0.5

ρ

α

0.5

0

-0.5

-1

|Vub|: where we are

Inclusive determination: the theoretical approach

• Inclusive decays potentially offer the most accurate way to determine $|V_{ub}|$, through a measurement of the decay rate:

• The process involves three different scales:

$$M_W >> m_b >> \Lambda_{QCD}$$

- The triple differential width is expressed in a double series, using a local
 Operator Product Expansion (OPE):
 Successfully tested
 - Power corrections known through $O(1/m_b^3)$
 - QCD corrections known through $~O(lpha_s^2eta_0)$

Successfully tested in charmed decays (2 % determination of |V_{cb}|)

Inclusive determination: limitations of the OPE

• The local OPE describes the partonic decay $b \rightarrow u \ell v$. There is a kinematical region of the hadronic decay that cannot be populated by the free quark decay.

• $1/m_b$ corrections to the OPE lead to increasingly singular contributions to the triple differential width (higher derivatives of the Dirac- δ). Predictions need to be "smeared" over sufficiently large regions of the phase space.

• Near the threshold non-local effects become important: leading terms of the OPE must be resummed into a **universal distribution function**, that describes the motion of the heavy quark inside the meson (Fermi motion).

Inclusive determination: the problem with cuts

• The $b \rightarrow c$ background is by far dominating over $b \rightarrow u$

experiments have to impose cuts that tend to destroy the convergence of the OPE.

$$\frac{\Gamma(b \to u \,\ell \,\overline{v})}{\Gamma(b \to c \,\ell \,\overline{v})} \approx \frac{\left|V_{ub}\right|^2}{\left|V_{cb}\right|^2} \approx \frac{1}{50}$$

• Current analyses are performed using:

• M_X (upper cut)

- P₊ (upper cut)
- E_{ℓ} (lower cut)
- M_X / q^2 (lower cut)

Sensitivity to shape function effects (Fermi motion)

Enhanced dependence on Weak Annihilation effects (contributions from the spectator quark at high q²)

q² (GeV²)

25

20

15

10

5

0

Points are

simulation

b→c allowed

2 2.5 E_e (GeV)

b→ulv

• E_{ℓ}/q^2

Inclusive determination: different framewoks

S. W. Bosch, B. O. Lange, M. Neubert, G. Paz, hep-ph/0402094

- J. Andersen, E. Gardi, hep-ph/0509360
- A. K. Leibovich, I. Low, I. Z. Rothstein, hep-ph/9909404

M. Neubert, hep-ph/0104280

B. O. Lange, M. Neubert, G. Paz, hep-ph/0508178

Good agreement between all determinations

A new theoretical framework

• Provide the triple differential width of $B \to X_u \ell \nu$ in the whole phase space, including all known perturbative and non-perturbative contributions.

The decay rate and the moments of any spectrum can be computed with any combination of cuts (common to BLNP and DGE methods).

• Work in the kinetic scheme, to separate perturbative and non-perturbative contributions consistently.

 Include all leading and subleading shape function effects, with an OPE based approach.

- Model Weak Annihilation effects in the high q² region.
- Combine all elements in a numerical C++ code, available for experiments.

The kinetic scheme

• The perturbative and non-perturbative regimes are separated by a hard Wilsonian cutoff $\mu \sim 1$ GeV.

• Soft contributions are absorbed in the definitions of the heavy quark parameters and of the distribution function: $m_b(\mu)$, $\mu_{\pi}^2(\mu)$, $\rho_D^3(\mu)$...

- Structure functions diverge less severely (left divergences due to collinear effects).
- The kinetic scheme was applied successfully to $B \to X_c \ell \nu$ and $B \to X_s \gamma$
- A whole set of new calculations has been performed to account for the cutoff. $O(\alpha_s^2 \beta_0)$ corrections included for the first time.

• The moments of the distribution function are determined by the q_0 moments of the local OPE.

• The leading order shape function is independent of the process and shared by radiative decays. Subleading effects break universality there is a different shape function for each of the 3 structure functions W_{1-3} and for each value of q^2 :

Leading shape function
$$(m_b \to \infty)$$

 $F(k_+)$
Structure function
 $(i = 1,2,3)$
Finite-m_b shape function
 $F(k_+, q^2, \mu)$
 q^2 dependence cutoff dependence
 $(gluons with E_g < \mu)$

 We don't split dominant and subdominant contributions more efficient approach than introducing many subleading shape functions.

Fermi motion²

• Hadronic structure functions are defined *via* the convolution of the distribution functions with the perturbative structure functions:

$$W_{i}(q_{0}, q^{2}) = m_{b}^{n_{i}}(\mu) \int dk_{+} F_{i}(k_{+}, q^{2}, \mu) W_{i}^{pert} \left[q_{0} - \frac{k_{+}}{2} \left(1 - \frac{q^{2}}{m_{b}M_{B}} \right), q^{2}, \mu \right]$$
Functional form dependence
(not so relevant here, $F_{1}(k_{+}, 0, 1 \text{ GeV})$
but in $b \rightarrow s \gamma$?) 1.5
 $q^{2} = 10 \text{ GeV}^{2}$ 1.5
 $q^{2} = 0$ (lead)
 $q^{2} = 0$ (lead)
 $q^{2} = 0$
(lead+sublead) 0.5

-1

-1.5

0.25

-0.5

Inclusive determination of Vub

-0.75

-0.5

-1

 k_+

0.5

0.5

0.25

 k_{+}

0.25

-0.25

The high q² tail: the symptoms

• The poor convergence of the OPE at high q² emerges in a number of pathological features (non-analytic terms, weaker suppression of subleading contributions, negative variance of the distribution functions...).

The formalism developed at low q^2 is no more applicable.

• The q² spectrum becomes negative and diverges at the endpoint, due to the contribution of the Darwin term:

$$\frac{d\Gamma}{d\hat{q}^2} \sim \frac{\rho_D^3}{6m_b^3} \left[20\,\hat{q}^6 + 66\,\hat{q}^4 + 48\,\hat{q}^2 + 74 - \frac{96}{1-\hat{q}^2} \right] + \dots$$

• At the level of integrated rate the singularity is removed by a new operator:

$$\delta\Gamma \sim \left[C_{\rm WA} B_{\rm WA}(\mu_{\rm WA}) - \left(8\ln\frac{m_b^2}{\mu_{\rm WA}^2} - \frac{77}{6}\right)\frac{\rho_D^3}{m_b^3} + \mathcal{O}(\alpha_s)\right]$$

but we are interested in differential distributions as well...

18/07/07

Inclusive determination of Vub

The high q² tail: the cure

• First method (default):

- Model the tail, requiring well-behaved positive spectra.
- Introduce a WA contribution:

 $X\,\delta(1-\hat{q}^2)$ (good)

- Does not provide a triple differential distribution at high q² (bad).
- Still matches local OPE moments to a great accuracy.

Second method:

- "Freeze" the distribution functions at $q^2 \sim 11 \text{ GeV}^2$ and use them for the convolution at higher q^2 .
- Provides a triple differential width in the whole phase space (good).
- Does not match local OPE moments at high q².

We use the difference of the two methods to estimate the theoretical uncertainty

Extraction of |Vub| and theoretical uncertainties

- A Belle analysis with $M_X \le 1.7 \,\mathrm{GeV}$ and $E_\ell > 1.0 \,\mathrm{GeV}$ hep-ex/0505088
- **B** Belle and Babar analyses with $M_X \leq 1.7 \,\text{GeV}, q^2 > 8 \,\text{GeV}^2$, and $E_\ell > 1.0 \,\text{GeV}$
- C Babar with $E_{\ell} > 2.0 \,\mathrm{GeV}$ hep-ex/0507017

hep-ex/0505088, hep-ex/0509040

High q2 tail

cuts	$ V_{ub} \times 10^3$	f	exp	par	pert	tail model	q_{*}^{2}	X	ff	tot th
Α	3.99	0.69	6.7	3.9	1.9	1.7	2.2	$^{+0.0}_{-2.8}$	$^{+2.4}_{-1.1}$	$\pm 5.1^{+2.4}_{-3.9}$
В	4.60	0.36	7.3	3.8	2.6	3.0	4.2	$^{+0.0}_{-5.1}$	$^{+1.4}_{-0.5}$	$\pm 6.9^{+1.4}_{-5.6}$
\mathbf{C}	4.22	0.28	5.7	4.7	3.2	0.8	0.8	$^{+0.0}_{-6.4}$	$^{+1.2}_{-0.7}$	$\pm 5.8^{+1.2}_{-7.1}$

• All measurements are sensitive to the high q² region.

An instructive exercise: combine Belle results (A) and (B) to get a prediction with an *upper* cut on q2: $M_X \le 1.7 \text{ GeV}, q^2 < 8 \text{ GeV}^2$, and $E_\ell > 1.0 \text{ GeV}$

$$|V_{ub}| = 3.28 \times 10^{-3} \pm 4.4^{+1.7}_{-2.6}\%$$
 (th)

A dedicated analysis should be performed

Summary

• The present inclusive determination of $|V_{ub}|$ falls 2.5 σ away from the value preferred by the global UT fit.

- A new theoretical framework has been developed, which has several advantages:
 - Triple differential width with most precise pert and non-pert corrections
 - Separation of hard and soft regimes with a Wilsonian cutoff
 - Leading and subleading Fermi motion effects
- The estimates obtained for $|V_{ub}|$ are in agreement with other determinations.
- The critical role played by the high q^2 region has been pointed out. Even a small contribution from Weak Annihilation decreases $|V_{ub}|$ significantly.
- The analysis suggests to perform measurements with an *upper* cut on q².