Cosmology and Dark Energy

Pierre Astier LPNHE/IN2P3/CNRS Universités Paris VI&VII

EPS-HEP July 24th 2007

Dark Energy : (pre)history

Indirect evidences (that remain true today...)

- Age of oldest stars seemed larger than the age of the universe (~< 10 Gy for $\Omega_{M} = 1, H_{0} = 70$)
- Indications in favor of a low $\Omega_{M} \sim 0.3$
 - Large scale (> 10 Mpc) galaxy correlations
 - Baryonic/total mass in galaxy clusters ~ 0.1 + baryon density from nucleo-synthesis (He/H ratio) $\Omega_{\rm p}$ ~ 0.03
- Theoretical prejudice in favor of flatness ($\Omega_{tot} = 1$)

==> There is probably something else than matter.

Dark Energy : history

1998 : two groups find that distant (z~0.5) SNe Ia appear fainter than expected in a matter-dominated universe.

Confidence contours, assuming that this "something else" is a cosmological constant

(Perlmutter et al 1999)

CMB: WMAP 3-year data-set

(astro-ph/0603449, Spergel et al, 2006)

Universe is ~ flat $\Omega_{\rm tot} = 1.01 + / -0.015$ (wmap + others) now set $\Omega_{tot} = 1$: $\Omega_{\rm M} = 0.234 + - 0.035$ $\Omega_{\rm h} = 0.042 + - 0.003$ h=0.735 + - 0.03 $(h^2 = 0.54 + 0.04)$ $\Omega_{\rm M} h^2 = 0.126 + -0.01$ $\Omega_{\rm h} h^2 = 0.022 + -0.001$

Dark Energy existence : 2 ways

Dark Energy nature

"Nature" here means "Equation of State" w or how DE reacts to expansion $P_x = w\rho_x$ or equivalently $\rho_x \sim R^{-3(1+w)}$

Туре	W
Matter	0
Radiation	1/3
Cosmological cst	-1
Static scalar field	-1
Cosmic strings	-1/3
Domain walls	-2/3
"Quintessence"	<~-0.8
"Phantom energy"	<-1

Concordance model : a strange brew

•Universe is flat (within uncertainties).

- •Matter (density ~ R^{-3}) represents about 25 % of the total energy.
- Baryonic matter only represents 4 % of the total
- There is ~20 % of so-called dark matter... about which we know almost nothing...
- And ~75 % of dark energy(density~ R^{~0})... ... about which we know less than nothing

Dark Energy : casting for theoreticians

- A bare cosmological constant (the standard term in Einstein's equations)
- Adjustment to gravity : Non-minimal couplings or extra dimensions

(change General Relativity, but don't forget to check the fuses)

• Quintessence and variants

(add a new scalar field, with little or no kinetic energy)

• Back Reaction (no new physics)

(Formation of structures influences average apparent expansion)

Dark Energy : observational handles

Expansion history H(z) constrains the RHS of Friedmann's equation

$$\left(\!\frac{\dot{R}}{R}\!\right)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3} - \frac{k}{R^{2}}$$

- Distances to standard candles as a function of z (SNe Ia)
- Angular size of a standard rod as a function of z (Baryon Acoustic Oscillation , BAO)

Growth of (matter) structures

- Large scale matter power spectrum evolution with z (weak shear)
- Galaxy cluster statistics

$$\ddot{\delta} + 2(\frac{\dot{R}}{R})\dot{\delta} = 4\pi G\rho_{\rm M}\delta$$

Distances and cosmological parameters

$$ds^{2} = dt^{2} - R^{2}(t)(\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + sin^{2}\theta d\phi^{2}))$$

r(z) =(comobile) distance to a source at a redshift z. Source and observer are themselves comobile

Messenger : light \rightarrow ds = 0. With the Friedmann equation:

$$r(z) = \frac{c}{\mathbf{H}_0 \sqrt{|\Omega_k|}} \mathcal{S}(\sqrt{|\Omega_k|} \int_0^z \frac{dz'}{\sqrt{(1+z')^2(1+\Omega_M z') - z'(2+z')\Omega_\Lambda}}) \qquad \mathcal{S}(x) = \begin{cases} \sin(x) & \text{si } k = 1 \\ x & \text{si } k = 0 \\ \sinh(x) & \text{si } k = -1 \end{cases}$$

How to measure cosmological distances ?

- luminosity distance $d_L = (1+z) r(z)$

-> observed flux of an object of known (or reproducible) luminosity

- angular distance
$$d_A = r(z)/(1+z)$$

-> angle that sustains a known length

- Correlations of CMB anisotropies.
- Correlations of galaxies.

The expansion history depends on the sum of 3 terms.

The equation of state only enters in one of them.

- --> exact or quasi degeneracies from fits of r(z)
- 1) need to know Ω_k (from C.M.B + something)
- 2) if w(z) is arbitrary, the expansion history (via r(z)) constrains a relation between Ω_{M} and w(z), not both of them independently.
- 3) even assuming a constant w, there remain a strong (although not exact) degeneracy.
- --> distance data alone does not fix unambiguously the E.O.S
- P. Astier (Manchester 24/07/2007))

Observing Dark Energy(!)

measures

Dark energy plays an important role in the recent universe (z <~1).

Its effect decreases (vanishes?) with increasing z.

Particularly sensitive methods (for $z < \sim 1$):

- Supernovae Ia combinations of Optical (and IR) telescopes, imaging and spectroscopy r(z)Figure of merit : number of SNe, z span r(z)- Weak gravitational shear $f(Z_{lanc}, Z_{cource})$ Optical telescopes, imaging Figure of merit : surveyed area on the sky (up to $z\sim 1$) P(k;z)- Baryon Acoustic Oscillations r(z), H(z)Optical telescopes, imaging and spectroscopy. $\Omega_{\rm m} {\rm h}^2$ Figure of merit : surveyed universe volume $(via z_{eq} and c_{sound})$

DE probes : current development

Type Ia supernovae (distances to standard candles): Established acceleration/Dark Energy (1998) Now in a second round of observing programs.

BAO (primordial peak in the galaxy correlation function): Signal detected in the SDSS and 2dF (at a single redshift) (2005) Second round programs planned or under way.

Weak Lensing (galaxy shear correlations due to DM): Signal detected in 2000. z dependence of the signal to be quantified soon.

Galaxy clusters (counting)

Feasibility unclear: efficiency & modeling issues P. Astier (Manchester 24/07/2007))

Distances to SNe Ia : some history

Early days:

- Riess et al 1998 (10(+6) SNe Ia)
- Perlmutter et al 1999 (42 SNe Ia)
- => Acceleration of expansion

=> Gruber prize to the ~50 authors of these 2 papers !

Later on:

- Sullivan et al 2002 Hubble diagrams by galaxy types (non-evolution test)
- Tonry et al 2003 (+8)
- Barris et al 2003 (+23 SNe Ia, z<1)
- Knop et al 2003 (+11 SNe Ia measured with HST)
- Riess et al 2004: (+16 SNe Ia found and measured with HST) up to z~1.6
- Riess et al 2006: (+17 SNe Ia found and measured with HST) up to z~1.6

Supernovae Ia

Thermonuclear explosions of stars which appear to be reproducible

- Very luminous
- Can be identified (spectroscopy)
- Transient

(rise ~ 20 days)

- Scarce (~1 /galaxy/millenium)
- Fluctuations of the peak luminosity : 40 %
- Can be improved to ~14 %

Measuring distances to SNe Ia

Sne Ia are observed to exhibit reproducible peak luminosities

- Dispersion ~ 40 % caused by luminosity variations.
- --> Have to use intrinsic luminosity indicators:
 - decline rate (or light curve width)
 - -> fair time sampling of light curves
 - color (i.e. ratio of fluxes in different bands)
 - -> measurements in several bands

French-Canadian led Collaboration to discover, identify and measure SNe Ia in the CFHT Legacy Survey(DEEP). About 40 persons.

Targets 500 well measured SNe Ia at 0.2<z<1

Rolling search over four 1 deg² fields in 4 bands (griz): ~250 hours/year at CFHT.

Spectroscopy : ~ 250 h/year on 8m-class (!!)

- VLT (Europe 120 h/y), Gemini (US/UK/Can 120 h/y), Keck (US 30 h/y).

MegaCam at CFHT

MegaCam:

- 36 CCDs 2k x 4.5k pixels
- -1 pixel = 0.185''
- field of view : 1 deg²
- 1^{rst} light at end of 2002.

CFHT:

- diametre 3.6m
- Mauna Kea, Hawaii
- 4200 m
- <seeing> = 0.8"

CFHTLS/Deep : Observing mode

- 40 nights/year for 5 years.
- Repeated observations every ~4 night ("rolling search"), service mode
- 4 bands g,r,i,z
- 4 one deg² fields monitored ~ 6 month/year
- -> Photometric data **before** objects are detected
- -> <u>Multiplexing</u>: several SNe per field in a single exposure -> Repeated calibration

of field stars

0.00 300 400 500 600 700 800 900 Wavelength (nm) SNLS real-time light-curves Date May04 Jun04 Jul04 Aug04 Sep04 Oct04 Nov04 Dec04 Jan05 Feb05 20 Future 0.2 21 Magnitude 0.4 22 ਰ.6 ਜ 0.8 0 1.0Z 1.2 0 25 0.2 E 21 Magnitude 0.4 <u>م</u> 22 0.6 tu 0.8 8.0 1.0 p 25 21 Magnitude 22 0.4 23 24 0.68 0.8 Mav04 Jun04 Jul04 Aug04 Sep04 Oct04 Nov04 Dec04 Jan05 Feb05 Date

Spectroscopy

Identification of SNe Ia

Redshift (usually of the host galaxy)

Detailed studies of a (small) sample of SNe Ia/II

Telescopes

- VLT Large program (service)
 - 240h in 2003+2004, idem 2005+2006
- Gemini : 60h/semestre

Photometric calibration

- Relies on repeated observations of Landolt standard stars.
- Calibration in "Landolt" (Vega) magnitudes because nearby SNe are calibrated this way
- Produces calibrated star catalogs in the CFHTLS Deep fields, in natural Megacam magnitudes.
 Comparison of synthetic and observed color terms

(Megacam/Landolt & Megacam SDSS 2.5m)

-Repeatability better than 0.01 (0.015 in z)

First year SNLS data set

(up to July 2004)

142 acquired spectra:20 Type II SNe

- 9 AGN/QSO
- 4 SN Ib/c
- 91 SNe Ia
 - -10 missed references (are now usable)
 - 6 only have 1 band (lost)

75 usable Ia events

Hubble Diagram of SNLS (first year)

Final sample :

- 45 nearby SNe from literature
- +71 SNLS SNe
- (2 events lightcurves are badly fitted,
- 2 are strong Hubble Diagram outliers)

Distance estimator:

$$\mu_B = m_B^* - \mathcal{M} + \alpha(s-1) - \beta c$$

brighter-slower

brighter-bluer

$$\chi^{2} = \sum_{ob \, jects} \frac{(\mu_{B} - 5 \log_{10}(d_{L}(\theta, z)/10 pc))^{2}}{\sigma^{2}(\mu_{B}) + \sigma_{int}^{2}}$$

- minimize w.r.t $\boldsymbol{\theta}, \boldsymbol{\textit{M}}, \boldsymbol{\alpha}$, $\boldsymbol{\beta}$
- compute σ_{int} so that $\chi^2 = N_{dof} (\sigma_{int} = 0.13)$
- marginalize over M, α , β to draw contours

Confidence Contours

P. Astier (Manchester 24/07/2007))

BAO: Baryon Acoustic Oscillations (Eisenstein et al 2005, SDSS)

fit	parameters (stat only)
$(\Omega_{\rm M},\Omega_{\Lambda})$	$(0.31 \pm 0.21, 0.80 \pm 0.31)$
$(\Omega_M - \Omega_\Lambda, \Omega_M + \Omega_\Lambda)$	$(-0.49 \pm 0.12, 1.11 \pm 0.52)$
$(\Omega_{\rm M}, \Omega_{\Lambda})$ flat	$\Omega_M=0.263\pm0.037$
$(\Omega_{\rm M}, \Omega_{\Lambda}) + { m BAO}$	$(0.271 \pm 0.020, 0.751 \pm 0.082)$
$(\Omega_{\rm M}, w)$ +BAO	$(0.271 \pm 0.021, -1.023 \pm 0.087)$

(astro-ph/0510447)

Evolution test: comparing distant (z<0.8) and nearby SNe

Stretch, color and relations with luminosity are essentially compatible P. Astier (Mancheste, between nearby and distant events.

Photometric calibration and EOS accuracy

- a 1% uncertainty on distance
- a 0.05 uncertainty on w

(from astro-ph/0610906)

SNLS Systematic uncertainties

Summary:

Source	$\delta \Omega_{\rm M}$	$\delta\Omega_{ m tot}$	δw	$\delta\Omega_{ m M}$	δw
	(flat)		$(fixed \ \Omega_M)$	(with BAO)	
Zero points					
$(g_M r_M i_M z_M)$	0.024	0.51	0.05	0.004	0.040
Vega spectrum	0.012	0.02	0.03	0.003	0.024
Filter bandpasses	0.007	0.01	0.02	0.002	0.013
Malmquist bias	0.016	0.22	0.03	0.004	0.025
Sum (sys)	0.032	0.55	0.07	0.007	0.054
U-B color(stat)	0.020	0.12	0.05	0.004	0.024

Improvements foreseen on z calibration and Malmquist bias

SNLS Cosmological results

(SNLS collaboration, A&A 2006, astro-ph/0510447)

For a flat ACDM cosmology:

(SNLS alone)

 $\Omega_{\rm M} = 0.264 \pm 0.042 \ (stat) \pm 0.032 \ (sys)$

For a flat Ω_M , w cosmology : SNLS + Baryon Acoustic Oscillations (Eisenstein et al, 2005):

$$\Omega_{\rm M} = 0.271 \pm 0.021 \, (stat) \pm 0.007 \, (sys)$$

$$w = -1.02 \pm 0.09 \, (stat) \pm 0.054 \, (sys)$$

- Confirmation of acceleration of expansion with 71 (new!) distant SNe Ia.
- Use color-corrected distance estimate without prior on color.
- Careful study of systematics
- Photometric calibration will improve with specific measurements at CFHT

SNLS 2.5 years Hubble Diagram

Up to March 2006, ~230 distant SNe Ia

More Data Coming Soon

- High-z Supernovae (z>0.3)
 - **SNLS**, Essence, SCP, PANS(HST)
 - Medium-z Supernovae (0.05<z<0.3)
 - SDSS
- Local Supernovae
 - CfA, KAIT, CSP, SNFactory,...

SNe+BAO:Short term forecasts for w

Material from D. Eisenstein (et al). I added mistakes on my own.

Baryon Acoustic Oscillations

- Before recombination, sound waves propagate in the universe.
- Acoustic oscillations are seen in the CMB Look for the the same waves in the galaxy correlations.
- Typical CMB fluctuations are ~10⁻⁵...
 ... expect 1% signal today in galaxy correlations

propagation of a fluctuation from BB to recombination

A Standard Ruler

- The acoustic oscillation scale depends on the sound speed and the propagation time.
 - These depend on the matter-toradiation ratio $(\Omega_m h^2)$ and the baryon-to-photon ratio $(\Omega_b h^2)$.
- The CMB anisotropies measure these and fix the oscillation scale.
- In a spectroscopic galaxy redshift survey, we can measure this along and across the line of sight.
- Yields H(z) and $D_A(z)$!

Detection in the SDSS

(D.Eisenstein et al [SDSS Collab.] 2005)

- 55000 Luminous Red Galaxies
- Over 4000 deg² up to z~0.48
- <z> = 0.35
- Sources of bias carefully studied:
 - galaxy bias (light vs mass)
 - non-linear structure formation

200

150

100

-50

-100

(s) \$₂\$ 50

- redshift distortions

Two Scales in Action

Eisenstein et al [SDSS], ApJ (2005) (astro-ph/0501171)

BAO : future

- **SDSS** is currently doubling its surveyed area (4000->8000 deg²)
- The **BOSS** project : reach $z \sim =0.8$ over 10 000 deg² (2011?)
- The AAOmega project: reach z=0.7 over 3000 deg² (running)
- Next generation typically requires :
 - 8m-class telescope
 - wide-field spectrograph (~2 deg FOV)
 - Get ~5000 spectra in a single shoot
 - No project approved yet....
- What about BAO using photometric redshifts?

BAO with photometric redshifts

25

C

Baryon fraction Ω_b/Ω_m 0.1 0.15 0.2

0.05

astro-ph/0605303 : 600 000 Luminous Red Galaxies from SDSS at 0.4<z<0.7, using photo-z (see also 0605302: same data, different analysis)

-> ~ < 3 sigma detection of BAOs
-> comparable to Eisenstein et al (2005)
-> 10 photo-z ~ 1 spectroscopic z
-> and we just loose H(z)

Wide field imaging projects

	FOV	diameter	first light	status	who/where
VST @ ESO	1 deg2	2.6 m	2008	funded	ESO/Paranal
DARKCam	2 deg2	3.6 m	??	refused at ESO	UK+
HyperSuprimeCam	2-3 deg2	8 m	2012	~funded	Japan/Subaru
Dark Energy Survey	2 deg2	CTIO-4m	2012	~funded	Fermilab/CTIO
Pan StarsS	7 deg2	1.8 m	2007	funded	Univ. Hawaii
Pan StarsS 4	7 deg2	1.8 m x 4	2009 (+)	not funded	Univ. Hawaii
LSST	10 deg2	8 m	2014	not funded	DOE/NSF
SNAP	0.7 deg2	2 m	2017(+)	competing	DOE/NASA
DUNE	~1 deg2	1.2 m	2017(+)	competing	ESA

- Can target all DE probes : WL, SNe, BAOs, galaxy clusters
- Ground based : visible From space : near IR (+visible)

LSST ugrizY Filter Set

LSST concept

- Primary mirror :~ 8m
- Single instrument : imager
- •with Field Of View~ 10 deg²
- 6 bands from 330 to 1050 nm.
- Visits the whole dark sky in 2 bands within less than a week
- 20 Tb/night
- Science:
 - DM & DE through lensing
 - SNe, BAO
 -
- First light anticipated in 2014

LSST forecast : BAO Power Spectra

Combination yields accuracy ~ 2% on constant w

Neutrino mass(es) from telescopes

Neutrino number density is known precisely from CMB temperature $-> m_v$ translates to a physical density.

- Since neutrinos are light, they slow down the growth of structures on small scales (large k).

-> Impact correlations of galaxies

Neutrino mass(es) : limits

No positive detection yet, only upper limits.

Strongly dependent on the allowed parameter space and data samples

astro-ph/0602155 :

CMB, LSS, BAO and SNIa , reasonably open parameter space ---> $m_v < 0.62 \text{ eV} (95 \% \text{ CL})$

astro-ph /0604335:

CMB, LSS, BAO, SNIa and Ly alpha , narrower parameter space: ---> $m_y < 0.17 \text{ eV} (95 \% \text{ CL})$

Neutrino mass(es) : outlook

Weaknesses of this approach to neutrino mass detection:

(1) There are interesting degeneracies :
 e.g: dark energy equation of state is was degenenerate with m_y

(2) We now have to use a lot of probes to lift degeneracies systematic uncertainties of probes are mainly ignored

(3) We measure galaxy correlations, we compute matter correlations (general problem referred to as the bias)

==> Expecting simpler and safer analyses using matter power spectrum measured via lensing (weak shear or CMB lensing) P. Astier (Manchester 24/07/2007))

Modified gravity : non-minimal couplings

(R. Bean & al astro-ph/0611321)

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left[R + f(R) \right] + \int d^4x \sqrt{-g} \mathcal{L}_{\rm m}[\chi_i, g_{\mu\nu}]$$

Choose f so that it only impacts on large scales and preserves small scales

-> Cannot get CMB and galaxies power spectra with the observed ratio (as in ΛCDM)

Extra dimension(s)

DGP model of 5D gravity : (3+1)D brane in a (4+1)D bulk.

At odds with recent constraints assuming a flat universe.

Fairnbairn & Goobar (astro-ph/0511029)

Conclusions/summary

- Dark Energy looks like a cosmological constant:

- $-w = \sim -1 + -0.09$ (down to 0.07 using SNe, BAO, CMB)
- improvements down to 0.05 are expected within ~ 2 years
- drastic improvements will come from wide field imaging facilities ground- or space- based.
- Expected data for the coming years:
 - First results from second round spectroscopic BAO (AAOmega)
 - Final results from the CFHTLS weak shear analysis
 - Final results from the SNLS
 - Planck maps and power spectra

-