Standard Model Higgs searches with the CMS detector

C.Rovelli (INFN Roma1) on behalf of the CMS Collaboration

EPS, Manchester - July 19th - 25th

theoretical limits: finite and positive Higgs couplings experimental limits:

direct (from LEP): $m_H > 114.4 \text{ GeV/c}^2$ Phys.Lett.B 565 (2003) 61 indirect (from EW data): $m_H < 144 \text{ GeV/c}^2 @ 95\% \text{ CL}$ $m_H < 182 \text{ GeV/c}^2$ including LEP results } LEP EW WG home page (using latest measurement of m_{top} = 170.9 GeV/c²)

SM Higgs production at LHE

SM Higgs decays

very clean signature in m_H<140GeV/c² region low branching ratio (0.002)

signature: two isolated high p_T photons narrow peak in di-photon invariant mass

□ backgrounds: $pp \rightarrow \gamma\gamma$ (irreducible) $pp \rightarrow \gamma+jets$, $pp \rightarrow jets$ (reducible)

experimental requirements:
 very good γ identification and isolation
 aiming at 0.5% ECAL energy resolution

signal: m _H = 115 GeV/c ² m _H = 140 GeV/c ² backgrounds:	σxBR = <mark>99.3fb</mark> σxBR = <mark>65.5fb</mark>
$pp \rightarrow \gamma \gamma$	σ = 82pb
pp $\rightarrow \gamma$ +jets	σ = 5x104pb
pp → jets	σ = 2.8x10 ⁷ pb

 $H \rightarrow \gamma \gamma$: results

two approaches: cuts based analysis and neural network analysis

signal: very small contribution to the total number of events (signal efficiency at 120 GeV/c² ~ 30%) 30fb⁻¹: discovery possible for masses < 140 GeV/c² using 0.5% resolution

$H \rightarrow ZZ \rightarrow 4$ charged leptons

GOLDEN CHANNEL: cleanest discovery channel over m_H>140GeV/c² range

- □ signature:
 - 2 pairs of opposite-charge, same flavour isolated leptons
 - □ from primary vertex
 - \Box dileptons invariant mass ~ m_Z

□ backgrounds: $pp \rightarrow ZZ^{(*)}$ (irreducible, dominant) $pp \rightarrow t\bar{t}$, $pp \rightarrow Zb\bar{b}$ (reducible)

□ main experimental challenges: lepton identification with high efficiency and resolution down to low (~ 5 GeV/c) p_T

selection criteria: requirements on vertex, $p_T(I)$, isolation, m(II)

$H \rightarrow ZZ \rightarrow 4$ charged leptons: significance

$H \rightarrow WW \rightarrow 2I2v$

discovery channel in $2m_W < m_H < 2m_Z$

□ signature:

2 charged leptons and missing energy
no jet activity in the central region

2 neutrinos in the final state: g $\$ no mass peak, counting experiments \rightarrow accurate background estimate from data needed

□ main backgrounds: $WW^{(*)}$ (irreducible, dominant) $pp \rightarrow t\bar{t}, pp \rightarrow Wtb$ $pp \rightarrow W+jets, pp \rightarrow Z+jets$ } (reducible)

crucial for the analysis: reconstruction tools for charged leptons, missing energy and jet veto understanding !!! 2 opposite charge leptons no jet with $E_T > 15 GeV$, $|\eta| < 2.5$ MET > 50 GeV 12 < m(II) < 40 GeV 30 < $p_T^{max} < 55 GeV$ $p_T^{min} > 25 GeV$ cuts and counts $\Delta \Phi(II) < 45^{\circ}$ analysis

$H \rightarrow WW \rightarrow 2I2v$: results

precise background knowledge

- \rightarrow control regions using data
- ie. WW: inverted kinematic cuts on $\Delta \Phi(II)$ and m(II)
- ie. tī: extra b-tagged jets

 5σ with L<1fb⁻¹ m_{H} =165 GeV/c²

 $H \rightarrow WW \rightarrow Iv lv$

170

NLO cross sections

180

m_H [GeV/c²]

190

Other Higgs production mechanisms

associated ttH, WH production: additional leptons/jets in the final state vector boson fusion: two tagging jets, large Δ njj (>4.5), large m(jj) (>1TeV)

□ despite lower cross section wrt gg fusion

- increased discriminating power against QCD jets background
- better main vertex reconstruction

□ with large statistics: enhance the significance, measure of Higgs couplings

Analyses common aspects

Event generation and simulation:

- \square NLO, NNLO: K factors for σ and events re-weighting
- □ MC used: PYTHIA, CompHEP, Alpgen, TopReX, MC@NLO....
- full detector simulation and reconstruction
- uncertainties taken into account:
 - □ theoretical:
 - pdf, N(N)LO corrections, factorization/renormalization scale
 - □ experimental:
 - lepton reconstruction efficiency and energy scale
 - jets/MET scale
 - misalineament, miscalibration, geometry description (ie. tracker material budget)
 - 🗆 data driven estimate
 - background shape and cross-section in signal region
 - leptons energy scale (via Z,W -> II)

recently published analyses

(CMS Physics TDR, vol II: http://cmsdoc.cern.ch/cms/cpt/tdr) 13

Summary of SM Higgs discovery

all Higgs mass range: significance larger than 50 with 30 fb⁻¹ $m_H < 140 \ GeV/c^2$ discovery with L < 10 fb⁻¹ $m_H > 140 \ GeV/c^2$ discovery with L < 5 fb⁻¹

Higgs mass and width

Summary

- CMS discovery potential for the SM Higgs boson recently evaluated with full detector simulation
- inclusion/development of
 - □ systematics errors, both theoretical and experimental
 - background estimate procedures using data
 - □ NLO computation
- CMS discovery reach
 - \Box L < 10fb⁻¹ in the H $\rightarrow\gamma\gamma$ channel @ 120 GeV/c²
 - \Box L < 3fb⁻¹ in the H \rightarrow ZZ channel @ 180 GeV/c²
 - $\hfill\square\hfill\ L \,{\sc s}\,$ 1fb-1 $\,$ in the H \rightarrow WW channel @ 165 GeV/c^2 $\,$
- significance > 5σ with L = 30fb^{-1} in 120 GeV/c² < m_H < 600 GeV/c^2 range
- Higgs mass precision better than
 - \Box 0.1% if m_H < 200 GeV/c²
 - \square 2% up to 600 GeV/c²

BACKUP SLIDES

ttbar H, H→bbar

all the possible final states have been investigated: semileptonic, fully hadronic, fully leptonic

main backgrounds: ttbarjj, ttbar bbar, Z ttbar with Z \rightarrow bbar QCD multi-jets bkg for hadronic final states W,Z + jets for leptonic final states

main goals: b-jet tagging + extract the "correct" b-jets from the combinatorics

channel	S/B	S/√B	S/√B+dB²
semileptonic, µ semileptonic, e dilepton	0.108 0.086 0.069	2.0 1.5 1.4	0.44 0.37 0.42
hadron	0.087	2.0	0.22

→ full simulation analysis: H → bbar lost as discovery channel also with 60fb⁻¹

VBF with $H \rightarrow \tau \tau \rightarrow I + \tau jet + E_{T}^{miss}$

M _H [GeV]	115	125	135	145
Production σ [fb]	4.65×10^{3}	4.30×10^{3}	3.98×10^{3}	3.70×10^{3}
$\sigma \times BR(H \rightarrow \tau \tau \rightarrow lj)$ [fb]	157.3	112.9	82.38	45.37
$ m N_S$ at 30 fb $^{-1}$	10.5	7.8	7.9	3.6
$ m N_B$ at 30 fb $^{-1}$	3.7	2.2	1.8	1.4
Significance at 30 fb ⁻¹ ($\sigma_{\rm B}$ = 7.8%)	3.97	3.67	3.94	2.18
Significance at 60 fb ⁻¹ ($\sigma_{\rm B}$ = 5.9%)	5.67	5.26	5.64	3.19

20

INFN