

Latest Results on B-hadron Spectroscopy from CDF

Andreas Gessler Universität Karlsruhe (TH)

for the CDF Collaboration

EPS Conference

Manchester, July 2007

Overview

- The experimental setup: Tevatron and CDF
- b-meson spectroscopy at CDF
 - Observation of the B_{c}^{+}
 - Search for the $\eta_{\rm b}$
 - Orbitally excited B** mesons (B_d** and B_s**)
- Baryon spectroscopy at CDF
 - Talk by J. Heuser on Saturday
- Summary

The Tevatron

- Proton anti-proton collider
 - √s = 1.96 TeV
 - Currently 2.5 fb⁻¹ on tape
- Large bb cross section
 - ~ 50 μb
 - ~ 10^{11} pairs produced
- Production of all b-hadron species

EPS Conference, July 19th 2007 Page 3

Collider Run II Integrated Luminosity

- Transverse momentum \geq 1.5 GeV

- Forming a secondary vertex

A. Gessler, IEKP Universität Karlsruhe (TH)

The CDF Detector

- Multi purpose detector
 - Precise tracking and vertexing
 - Solenoid and calorimeters
 - Good muon coverage
- Trigger system to select events
- For b-physics most important
 - Di-muon trigger
 - J/ $\psi \rightarrow \mu\mu$
 - Silicon Vertex Trigger (SVT)
 - 2 charged tracks with

Observation of the B⁺

- B_ is not produced at B factories
- Low production rate $f(b \rightarrow B_{c}) \sim 0.05\%$
- Weak decay modes
 - J/ $\psi \ell v X$ Missing neutrino
 - J/ $\psi \pi^+$ Fully reconstructed
- Analysis

A. Gessler, IEKP

- Optimize selection cuts on reference decay $B_{\parallel} \rightarrow J/\psi K^+$
- Apply blindly on J/ $\psi \pi^+$
- Significant signal in 1.1 fb⁻¹

Spectrum of the B_c^+

- Peak in (J/ $\psi \pi$) mass spectrum
 - Significance > 8σ
 - Fit: Linear plus Gaussian
 - 87.1 signal events
 - $m(B_c) = 6274.1 \pm 3.2 \pm 2.6 \text{ MeV/c}^2$

- Lattice calculations for predicting the $\rm B_{\rm c}$ mass
- Old world average

$$- m(B_c) = 6400 \pm 400 \text{ MeV/c}^2$$

Search for the $\eta_{\rm b}$

- Pseudo-scalar meson
 - Has not been observed yet
 - Last undiscovered ground state meson
- Predictions of the properties
 - $m(\Upsilon(1s)) m(\eta_{b}) = 30..160 \text{ MeV/c}^{2}$

$$-\Gamma(\eta_{b}) < \Gamma(\eta_{c}) = 25.5 \pm 3.4 \text{ MeV/c}^{2}$$

- $BR(\eta_b \rightarrow J/\psi J/\psi) = 7 \cdot 10^{-4\pm 1}$
- 0.2 .. 20 events in 1.1 fb⁻¹
- Search for $\eta_{\rm b} \rightarrow J/\psi J/\psi$
 - No significant resonance

Limit for the $\eta_{\rm h}$

- Search window
 - Tighter cuts
 - 3 events
- Upper limit
 - Bayesianmethod
- Give upper limit
 - Relative production limit

 $\sigma(pp \rightarrow \eta_{b}X) \bullet BR(\eta_{b} \rightarrow J/\psi J/\psi) / \sigma(pp \rightarrow Hb \rightarrow J/\psi X) < 5 \times 10^{-3}$

- combined with $\sigma(pp \rightarrow b \rightarrow J/\psi J/\psi)$

 $\sigma(pp \rightarrow \eta_{b}X) \bullet BR(\eta_{b} \rightarrow J/\psi J/\psi) \bullet [BR(J/\psi \rightarrow \mu\mu)]^{2} < 2.6 \text{ pb} (C.L. 95\%)$

Orbitally excited b-mesons

- Heavy Quark Effective Theory (HQET)
 - Qq-mesons with $m_o \rightarrow \infty$
 - Analogy to hydrogen atom
- Spins of the quarks are decoupled
 - Total spin of the light quark
 - Total spin of the meson
- Four B_(s)** states

A. Gessler, IEKP

Universität Karlsruhe (TH)

- $_{-}$ j_a = 1/2 states are broad
 - Do not expect to see them
- $-j_{q} = 3/2$ states are narrow

Transition diagram

- Emission of a K, π
- B_d^{**} decays into $B^{(*)}$ π
- B_s** decays into B^(*) K
 - $B_s^{(*)} \pi$ forbidden by isospin
- Narrow states (D-wave)
 - Expected 3 peaks
 - $B_{(s)1} \rightarrow B^* \pi$ (K)
 - $B_{(s)2} \rightarrow B^* \pi$ (K)
 - $B_{(s)2} \rightarrow B \pi$ (K)

Outline of the $B_{(s)}^{**}$ analysis

- Decay $B^{**} \rightarrow B^{(*)+} \pi^{-}$ (K)
 - $B^{*+} \rightarrow B^+ \gamma$ (γ undetected)
 - − B⁺ → J/ψ K
 - B⁺ → D⁰ π^+
 - $B^+ \rightarrow D^0 \ 3\pi^{\pm}$ (for B^{**} only)
- Selection of the B**
 - Neural networks for B⁺ and B^{**}
 - Cut on network ouput
 - Cut on number of candidates

Observation of the B_s**

- Q value distribution
 - $Q = m(B^{**}) m(B) m(K)$
- Fit description
 - Signal: Gaussian
 - Background:

 $Q \cdot (Q - \beta)^{\gamma} \cdot \exp\left(-\gamma \cdot Q\right)$

- Results
 - Significance > 5σ
 - $m(B_{s2}^{*}) = 5839.64 \pm 0.30 \pm 0.14 \pm 0.5 \text{ MeV/c}^2$
 - $m(B_{s1}) = 5829.41 \pm 0.21 \pm 0.14 \pm 0.6 \text{ MeV/c}^2$

Observation of the B**

- Q value distribution
 - Clean signal
- Update to to more data
 - − 1.7 fb⁻¹: B⁺ → J/ψ K
 - 1.35 fb⁻¹: B⁺ → D⁰ (3) π^{\pm}
 - − $B^+ \rightarrow D^0 3\pi^\pm$ also increases statistics

- Competitive studies of b-states at CDF
 - First direct observation of the B_c
 - Best limit of $\eta_{\rm b}$ production
 - First observation of both narrow B_{s}^{**} states
 - Mass measurement of B** states
- For more information and details
 - See: www-cdf.fnal.gov/physics/new/bottom/bottom.html
- B-baryon spectroscopy at CDF (talk by J. Heuser)
- More data expected to come
 - Already on tape and will improve precision

$\mathsf{B}_{_{\mathrm{S1}}}$ Significance

- Toy MC ensemble according to background only fit
- Fit with and without signal • Gaussian
- Calculate difference in log • likelihood
- p-Value: Integral over all Toy MCs with at least a given difference over all Toy MCs

A. Gessler, IEKP

Universität Karlsruhe (TH)

