Charm production at HERA

ZEUS results

Paolo Bellan Padova University and INFN

Outlook

- Charm Physics: general motivations and themes
- > D mesons in DIS, in photoproduction and in the transition region
 - Cross sections
 - Charm Fragmentation fractions and ratios
 - Neutral / Charged
 - Strangeness-suppression factor
 - Vector / Total
- D mesons at HERA II with tracking methods
- Excited charm and charm-strange mesons (PHP + DIS)
- Conclusions

HQ production in *ep* collisions: the charm physics potentiality

- •Powerful test of QCD.
- •Clean measurement of the charm contribution to the structure function F₂^c
- •Information on *c* quark production and fragmentation (independent, if QCD factorisation theorem holds)
- •Testing different hadronisation models and fragmentation parameterisations
- Rich D mesons spectroscopy

Main processes contributing to HFL production at HERA are the boson-gluon fusion (BGF), directly sensitive to the p gluon content, and the resolved photon

Charm tagged via the reconstruction of different charmed mesons: D^* , D^+ , D^0 , D_s^+ ...

D mesons (D[±], D⁰,D[±], in DIS

 $1.5 < O^2 < 1000 \text{ GeV}^2$ 1998-2000 data, ~8<u>2 pb⁻¹</u>

Data compared to

Theoretical predtion from HVQDIS: NLO *cc* BGF + FFNS (lq, g evolving DGLAP, Zeus-NLO fit to F_2 for p PDF)

Peterson fragm. ($\epsilon = 0.035$, def. value) Fragm fractions: the measured ones $m_c = 1.35 \text{ GeV}, \ \Lambda^{(3)}_{\text{OCD}} = 363 \text{ MeV}; \ \mu_R = \mu_F = \sqrt{Q^2 + 4m_c^2}$

Measured: differential cross sections in Q^2 , $P_{T}(D)$, $\eta(D)$ and x; used to extract charm fragmentation ratios and fractions

Main theoretical systematics:

- PDF uncertainty
- Fragmentation models

• m_c

Cross sections can be used to extract F^{cc}_{2} (see M. Turcato's talk)

Manchester 21.07.2007

EPS 2007 ~ Paolo Bellan, ZEUS Collaboration ~ p_(GeV)

Not only 'old' data: D⁰, D⁺ at HERA II

~135 pb⁻¹ ,2005 data

Major upgrade: inner Si tracking system \rightarrow great improvement of the tracking performances, allowing:

- Analysis based mainly on the tacking techniques (Impact Parameter, Decay Length.)
- Signals with high purity (~90%)

Long lived D mesons have a displaced SV which can be reconstructed by the MVD.

Charm fragmentation ratios and fractions

- The fragmentation functions parameterize the energy transfer from a quark to a given meson: $f(c \rightarrow D^i)$
- Some of them not yet measured in *ep* or *pp* collisions (e.g. for D* in PHP); usually fitted from *e*⁺*e*⁻ data
- Source of large uncertainty in the $\sigma_{\textit{prod}}$ calculation
- Test different fragmentation and hadronisation models
- Ratios of the production rates for different D mesons → information on the quarks production
- Test for the universality of charm fragm. when compared to e⁺e⁻ results

Analysed channels and contest:

DIS (1.5 < Q² < 1000 GeV²):

$$\begin{bmatrix}
D^{0} \rightarrow K^{-}\pi^{+} & + \text{ c.c.} \\
D^{+} \rightarrow K^{-}\pi^{+}\pi^{+} \\
D_{s}^{+} \rightarrow \phi\pi^{+} \rightarrow K^{+}K^{-}\pi^{+} \\
V & D^{*+} \rightarrow D^{0}\pi^{+} \rightarrow K^{-}\pi^{+}\pi_{s}^{+} \\
(\Lambda_{c}^{+} \rightarrow K^{-}p\pi^{+} \sim 3\sigma, \text{ not used})
\end{bmatrix}$$

•Photoproduction: $D^* \rightarrow D^0\pi + c.c.$ $\downarrow K\pi\pi$

From D^0 , D^+ and D_s decays in DIS:

 $R_{u/d}$: ratio for the neutral to charged D meson production rates

 γ_s : strangeness suppress. factor $\gamma_s = \frac{2\sigma(D_s^+)}{\sigma^{eq}(D^+) + \sigma^{eq}(D^0)}$ (~ 20%) $\sigma^{eq}(D^i) = direct + (D^{*+}, D^{*0})contr$ P_V^{*d*}: fraction of charged D meson produced in a vector state / total

$$f(c \to D^i) = \frac{\sigma^{eq}(D^i)}{\sigma^c_{gs}}$$

 $σ_{gs}$ = all charmed ground state decaying weakly (Ω,Ξ,Λ_c corrected)

Manchester 21.07.2007

EPS 2007 ~ Paolo Bellan, ZEUS Collaboration ~

Manchester 21.07.2007

EPS 2007 ~ Paolo Bellan, ZEUS Collaboration ~

8

Excited charm and charm-strange mesons (PHP + DIS)

cq states:

S-waves(L=0) : D (spin 0), D*(spin 1) meson, well known

P-waves(L=1): 1 singl + 1 tripl. expected, decaying to S-waves + K or π

HQET ($m_Q \rightarrow \infty$) says: P-waves properties fixed by the lq spin *s*

Recently observed $D_1(2420)^0$, $D_2^*(2460)^0$

 $D_{s1}^{\pm}(2536), D_{s2}^{\pm}(2573)$ all narrow,

identified as the j=3/2 doublet members $(J^P = 1^+, 2^+ \text{ respectively});$

New *c*, *cs* broad mesons recently observed, as well as the radially excited $D^{*,\pm}$

 $j=L+s \rightarrow$ the 4 states become 2+2 doublets: j=3/2: only D-wave decays; narrow

J=5/2. Only D-wave decays, nand

j=1/2: S-wave decay; broad

Aim: to measure masses, widths, fragm. fractions, helicity dependence

Manchester 21.07.2007

EPS 2007 ~ Paolo Bellan, ZEUS Collaboration ~

$dN/d(\cos\alpha) \propto (1+R\cos^2\alpha); R=?$ Our best fits:

HQET: (valid for *cs*?) $\alpha := \angle \{\pi_s, \pi_a\}_{|\mathbf{D}^{*+}}$ R=0 j=1/2, 1⁺; R=3 j=3/2, 1⁺ (D₁⁰); R=-1 j=3/2, 2⁺ (D₂^{*0}).

 $R(D_1^0) = 6.1 \pm 2.3(\text{stat})_{-0.8}^{+2.0}(\text{syst})$

 $R(D_{s1}^+) = -0.74_{-0.17}^{+0.23} (stat)_{-0.05}^{+0.06} (syst)$

For D_{s1}⁺ PDG06 says, 1⁺ (R=0) to confirm; CLEO: -0.23±35; BELLE prel.: -0.70±0.03

11

 D_1^{0} , D_2^{*0} , D_{s1}^{+} masses and yields, widths and D_1^{0} , D_{s1}^{+} helicity as free parameters;

Masses values agree with the word average

 Γ (D₁⁰) above

 $R(D_{s1}^{+})$ hardly consistent with R = 0, i.e. J^P= 1⁺ does not contradict to R = -1, expected for 1⁺, 2⁺. Mixture of S and D waves for interference with D_{s1}^{+} 2460 ?

Measured also the charm fragmentation fractions:

 $f(c \rightarrow D_1^0), f(c \rightarrow D_2^{*0}), f(c \rightarrow D_{s1}^{*+}), \text{ and } \gamma^{D_1}$ (assuming isospin conservation)

Consistent with e^+e^- results

Fits results

$$\begin{split} N(D_1^0 \to D^{*+}\pi^-) &= 3030 \pm 340 \\ N(D_2^{*0} \to D^{*+}\pi^-) &= 880 \pm 170 \\ N(D_2^{*0} \to D^+\pi^-) &= 680 \pm 160 \\ \hline & \mathsf{PDG} \ \mathbf{06} \\ \hline \\ M(D_1^0) &= 2419.8 \pm 2.0(\mathrm{stat.})^{+0.8}_{-1.0}(\mathrm{syst.}) \\ M(D_2^{*0}) &= 2468.4 \pm 3.6(\mathrm{stat.})^{+1.1}_{-1.3}(\mathrm{syst.}) \\ \hline \\ & \Gamma(D_1^0) &= 51.6 \pm 7.0(\mathrm{stat.})^{+1.9}_{-4.1}(\mathrm{syst.}) \\ \hline \\ & \Gamma(D_1^0) &= 6.1 \pm 2.3(\mathrm{stat.})^{+2.0}_{-0.8}(\mathrm{syst.}) \\ \hline \\ & \mathsf{HFTQ: +3} \\ \hline \\ M(D_{s1}^+) &= 2535.30^{+0.44}_{-0.44}(\mathrm{stat.})^{+0.09}_{-0.08}(\mathrm{syst.}) \\ \mathbf{MeV} \end{split}$$

Performed also a search for the radial excited $D^{*'+}(2640)$ meson (~5 σ @DELPHI) decaying to $D^{*+}\pi^{-}\pi^{+}$;

<u>NO signal detected</u> → upper limit set on: $f(c \rightarrow D^{*'+}) * Br(D^{*'+} \rightarrow D^{*^+}\pi^-\pi^+) < 0.45\%$ (0.9% stronger than the OPAL one)

Conclusions

- Charm physics provides a lot of food for thought;
- ZEUS is extensively studying this sector: several results coming out
- Precision competitive with other experiments (and further enhancing with new tracking tools)
- Much more to come with the new data and full statistics analysis

BACKUP SLIDES

D mesons (D[±], D⁰, D^{*±}, D_s[±]) in DIS

1998-2000 data, ~82 pb⁻¹

- $E(e^{-}) > 10 \text{ GeV}$ • $1.5 < Q^{2}_{-x} < 1000 \text{ GeV}^{2}$
- $40 < \Sigma_{hadr}(\text{E-p}_z) < 65 \text{ GeV}$
- • $y_{JB} > 0.02$ & $y_{el} < 0.95$
- $|Z_{vertex}| < 50 \text{ cm}$
- |boxcut_x| < 12 cm; |boxcut_y| < 7 cm

Data corrected for reconstruction accept., efficiency, migrations

RAPGAP MC+ Heracles (1° ord. EW correction) LO ME +LL PS (Lund); CTEQ5L (*p*) and GRV-LO(γ) PDF

HVQDIS: NLO cc BGF + FFNS (lq, g evolving DGLAP, Zeus NLO fit to F₂ for p PDF)

Lund string fragment. (ε =0.035, def. value)

Fragm fractions: the measured ones

$$m_c$$
 = 1.35 GeV, Λ_{QCD} =363 MeV
 $\mu_R = \mu_F = \sqrt{Q^2 + 4m_c^2}$

 J/ψ negligible

Main systematic uncertainties:

EXP.

- Beauty contribution
 subtraction
- signal extraction procedures
- $\sigma(\Lambda_c)$ estimation
- CAL energy scale
- Luminosity meas.

TH.

Fragmentation
 models

- m_c
- PDF uncertainty

Signals extraction:

 χ^2 fit in each helicity bin: D-wave BW \otimes Gaussian resolution function (widh and acceptance corr. from MC) + Polynomial x exponential bkgr for D₁⁰, D^{*}₂⁰;

Added to the fit function: Feed-down from decays with undetected part (#ev from MC) and signals from $D_1(2430)^0$, $D_0^*(2400)^0$ states

for D_{s1}: unbinned Likelihood fit with gaussian funct. combining the two channels with K⁰,K^{+.}

 D_1^{0} , D_2^{*0} , D_{s1}^{+} masses and yields, widths and D_1^{0} , D_{s1}^{+} helicity as free parameters;

The mass values agree with the word average, Γ (D₁⁰) above (51.6 ± 7.0 VS 20.4 ±1.7)...

 $f (c \rightarrow D_1^{0}), f (c \rightarrow D_2^{*0}), f (c \rightarrow D_{s1}^{+}), \gamma^{D1}$ also measured (assuming isospin conservation); consistent with e^+e^- results

Performed also a search for the radial excited $D^{*/+}(2640)$ meson [DELPHI] decaying to $D^{*+}\pi^{-}\pi^{+}$;

<u>no signal detected</u> \rightarrow upper limit set on:

 $f (c \rightarrow D^{*\prime +}) * Br (D^{*\prime +} \rightarrow D^{*+}\pi^{-}\pi^{+}) < 0.45\%$ (0.9% stronger than the OPAL one)

Manchester 21.07.2007

EPS 2007 ~ Paolo Bellan, ZEUS Collaboration ~

ZEUS

EXP.

- Beauty contribution subtraction
- signal extraction procedures
- $\sigma(\Lambda_{c})$ estimation
- CAL energy scale
- Luminosity meas.

$$\sigma(ep) = \int_{\Delta y} \phi_{\gamma}(y) \ \sigma_{\gamma p}(sy) \ dy$$

RAPGAP MC+ Heracles (1° ord. EW correction) LO ME +LL PS (Lund); CTEQ5L (p) and GRV-LO(γ) PDF

 $P_V^{d} = 0.617 \pm 0.038(stat)^{+0.017} + 0.009(syst) \pm 0.017(Br)$ (Naïve spin-counting: 0.75)

 $R_{u/d} = 1.22 \pm 0.11 (stat)^{+0.05} -0.03 (syst) \pm 0.03 (Br)$

ZEUS

To distinguish $D_{1}^{*}(2420)^{0}$ and $D_{2}^{*}(2460)^{0}$ from each other and from the wide state $D_{1}(2430)^{0}$ and to extract the D_{s1}^{+} properties \rightarrow helicity angular distributions

$$R_{u/d} = \frac{\sigma^{untag}(D^0)}{\sigma(D^+) + \sigma^{tag}(D^0)}$$

