W+c production at the Tevatron

Mahsana Ahsan Kansas State University

On behalf of the DØ collaboration

The 2007 Europhysics Conference on High Energy Physics Manchester, England, July 20th, 2007

W+c production in p-pbar collisions

$$\sigma(p\overline{p} \to W^{-}c) = \iint dx_{p} \ dx_{\overline{p}} \ s(x_{p}, Q^{2})g(x_{\overline{p}}, Q^{2})\hat{\sigma}(sg \to W^{-}c)$$

+ $s(x_{\overline{p}}, Q^{2})g(x_{p}, Q^{2})\hat{\sigma}(gs \to W^{-}c) + s \leftrightarrow d$

- First measurement of W+c production at high $Q^2 \sim M_W^2$
- Direct access to quark-gluon process
- Provides a direct probe of strange sea in proton
 - SUSY H⁻ (H⁺) production in hadron-hadron collisions is also sensitive to s-quark (anti squark)
 - At Tevatron, $x_s \in [0.01 1]$ range
 - s-quark PDF has been directly measured at the fixed target experiments at low Q² scale (two orders of magnitude below the Tevatron scale)
- W/Z +b or c is the signature of many new physics processes at hadron colliders
 - W+c can be a significant background, for example, to top quark and SM Higgs production, to SUSY top production
- Test of pQCD and electroweak predictions

W+c-jet / W+jets ratio

- Fraction of W+jets produced with a net charm quantum number of ±1
- The ratio benefits from:
 - lots of cancellation in efficiencies, systematic uncertainties and luminosity at the first order
 - minimum dependence to the theoretical models

W charge is opposite to the muon charge from recoiling charm

$$R = \frac{N(W + c - jet)}{N(W + jets)}$$
$$= \frac{N^{OS} - f N^{SS}}{N_{Wj}^{obs} (1 - B) \times \varepsilon_c}$$

- $N^{OS} =$ Number of OS events
- $N^{SS} =$ Number of SS events

 $N_{Wj}^{obs} =$ Number of observed W + jets candidates

- f =Correction to the BKD to W + c
- B = fraction of background to W + jets
- \mathcal{E}_{c} = acceptance × efficiency of W + c relative to W + jets

Background W+jets processes to W+c-jet

The DØ detector

W+jets selection

MET

lepton

- W \rightarrow Iv decay modes, where I = e, μ , τ , with leptonic decays of τ
 - Isolated electron cluster in the EM part of calorimeter with a high pT matched track in the tracking system
 - Isolated muon reconstructed in the muon spectrometer with a high pT matched central track
 - Lepton pT > 20 GeV/c,
 - Missing E_T (MET) > 20 GeV
- W+jets sample is selected inclusively
 - Jets recoiling against the W boson are reconstructed with Run II mid point cone algorithm with cone radius 0.5
 - Minimum Pt of leading jet is 20 GeV/c and pseudo rapidity $|\eta|$ < 2.5

Method to determine W+c-jet & Background

- A jet containing a soft muon is tagged to enhance the heavy flavor jets in data sample
 - BF(c→μ) ~ 10 %

 $\mathsf{R} = \frac{N^{\mathrm{OS}}}{N_{\mathrm{vul}}^{\mathrm{obs}} \,(1)}$

- Establish a correlation between the charge of muon contained in jet with that of the lepton from W decay
 - Signal comprises of dominantly events containing opposite charge leptons (Nos >> Nss)
 - We estimate the background, *in situ*, from SS data sample
 - Apply only a weakly model dependent small correction "f" to take into account the "leading particle effect" from W+light-jet sample

7SS

jet Pt [GeV/c]

Muon-tagged jets Pt spectrum

• Minimum Pt muon in jet is 4 GeV/c, and the pseudo rapidity $|\eta| < 2.0$

Consistency for W+c-jet signal

- Data sample compared to b, c and light jet templates, after subtracting the background
 - Data favors the c-jet shape
 - Negligible W+b contribution

Discriminates b-jet from c-jet

Discriminates c-jet from light-jet

Efficiency for W+c-jet signal

- Many efficiencies cancel in ratio
- Determine the efficiency of finding the muon in jet from signal simulation
 - Correct for ~10% difference due to detector effects
 - Use a large data sample of $J/\Psi \rightarrow \mu^+\mu^-$ to estimate the correction

Differential W+c-jet fraction in W+inclusive jet sample

- Comparing with the LO Alpgen + Pythia prediction
 - Alpgen: LO matrix element generation
 - Pythia: Parton shower

PDF uncertainty (not shown) on the theoretical prediction is +7.3%, -6.9%

Preliminary Result

- W+c-jet fraction integrated over Pt above 20 GeV/c and |η| < 2.5
 - Muon Channel : 0.093 ± 0.029 (stat) ± 0.005 (syst)
 - Electron Channel : 0.060 ± 0.021 (stat) + 0.005 -0.006 (syst)
 - Combined: 0.071 ± 0.017 (stat + syst)
 - We observe a significant excess of OS events that is signature of W+c production

LO Alpgen+Pythia prediction:
– 0.040 ± 0.003 (PDF uncertainty)

Ratio of data to MC prediction:
"K" =1.78 ± 0.44

Conclusion

- The DØ experiment at the Tevatron has made the first measurement of W+c production with 1 fb⁻¹
- The measured W+c production rate is consistent with
 - LO pQCD predictions of Alpgen and Pythia
 - s-quark PDF evolved from low Q² scale (two orders of magnitude below that of the Tevatron scale)
- This measurement provides a direct evidence of quark-gluon interaction more important at LHC

BACKUP SLIDES

The DØ Luminosity

Run II Integrated Luminosity

19 April 2002 - 8 July 2007

Sensitivity of W+c production on s-quark PDF at Tevatron

- Ratio of CTEQ6.1 and MRST2004 parametrization of s-quark PDFs
- The x ∈ [0.01 1] range can be constrained at Tevatron
 - Q scale of the order of M_W

PDFs HEP data http://durpdg.dur.ac.uk/hepdata/pdf3.h

W+c Measurement Summary

jet P_T [GeV/c]	20-30	30-45	45-200	20-200
$< P_T > [\text{GeV/c}]$	23.9	35.1	62.3	34.6
N_{Wj}^{e}	38556	26347	24539	89442
N_{OS}^{e}	87	79	88	254
N_{SS}^{e}	49	45	72	166
f_c^e	1.177 ± 0.013	$1.159 {\pm} 0.015$	1.117 ± 0.028	1.145 ± 0.007
ϵ_c^e	0.0113 ± 0.0015	0.0125 ± 0.0011	0.0125 ± 0.0020	0.0124 ± 0.0012
$\frac{\sigma[W(\rightarrow e\nu)+c]}{\sigma[W(\rightarrow e\nu)+jets]}$	$0.070 {\pm} 0.031$	$0.084{\pm}0.038$	$0.026 {\pm} 0.046$	$0.060{\pm}0.021$
$N^{\mu}_{W,i}$	27828	17594	13446	58868
N_{OS}^{μ}	76	64	63	203
$N_{SS}^{\mu^-}$	28	38	56	122
f^{μ}_{c}	1.195 ± 0.025	1.174 ± 0.015	1.121 ± 0.035	$1.143 {\pm} 0.007$
ϵ^{μ}_{c}	0.0110 ± 0.0011	0.0122 ± 0.0013	0.0148 ± 0.0018	$0.0122 {\pm} 0.0012$
$\frac{\sigma[W(\rightarrow \mu\nu)+c]}{\sigma[W(\rightarrow \mu\nu)+jets]}$	$0.145{\pm}0.040$	$0.095{\pm}0.054$	$0.001 {\pm} 0.062$	$0.093 {\pm} 0.029$

Systematics uncertainties:

		e-channel			μ -channel		common
P_T	JES	JER	f_c^e	JES	JER	f^{μ}_{c}	ϵ_{c}^{l}
20-30	$\pm^{0}_{0.009}$	± 0.002 ± 0.003	± 0.002	$\pm^{0}_{0.007}$	$\pm^{0.002}_{0.003}$	± 0.001	± 0.004
30 - 45	$\pm^{0.003}_{0.002}$	$\pm^{0.002}_{0.003}$	± 0.002	$\pm^{0.005}_{0.001}$	$\pm 0.002 \\ 0.003$	± 0.001	± 0.004
45 - 200	$\pm^{0.001}_{0.001}$	± 0.002	± 0.003	$\pm^{0.011}_{0}$	± 0.002 ± 0.003	± 0.001	± 0.003
20-200	$\pm^{0}_{0.004}$	$\pm^{0.002}_{0.003}$	± 0.002	$\pm^{0.002}_{0.001}$	$\pm^{0.002}_{0.003}$	± 0.001	± 0.004

Previous measurements

- The charm production with an isolated muon has been measured at fixed target experiments that directly measure the strange quark PDF at low Q² scale
 - FERMILAB-THESIS-2006-01
 - NuTeV collaboration, Phys.Rev. D 64 (2001) 112006
 - Charm II collaboration, Eur. Phys. J. C11: 19-34 (1999)
 - CCFR collaboration, Phys. Rev. Lett. 70 (1993) 134
 - CCFR collaboration, Z. Phys. C 65 (1995) 189
 - CDHS collaboration, Z. Phys. C 15, 19, 1982b
 - CDHS collaboration, Phys. Lett. B 69, 377 1977a
- These experiments determined
 - the size of strange sea in the nucleon
 - asymmetry in strange / anti-strange momentum distribution
 - dynamics of the charm quark

Holder et al. 1977a, Abramowicz et al., 1988b

Strange/Anti-strange Asymmetry

D. Mason, DIS 2006 Proceedings: "Final strange asymmetry Results from NuTeV"

$$S^{-} = \int [xs(x) - x\overline{s}(x)]dx \sim +0.007$$

0.00196 ± 0.00046 (stat) ± 0.00045 (sys) + 0.00148 – 0.00107 (external)

Xo= 0,01, 0.05, 0.15 As x_0 goes up, the asymmetry S⁻ disappears

