Inclusive Properties of Hadronic Final States at HERA

Daniel Traynor, EPS 2007

Presented Results

zEUS Measurement of Azimuthal Asymmetries in NC DIS. hep-ex 0608053 (Zeus Collab.,S. Chekanov et al., Eur. Phys. J. C51 (2007) 289-299)
(111) Measurement of Event Shape Variables in DIS. hep-ex 0512014 (H1 Collab., A. Aktas et al., Eur. Phys. J. C46 (2006) 343-356)

Charged Particle production in High Q2 DIS. hep-ex 0706.2456

ZEUS Scaled Momentum Spectra in the Current Region of the Breit Frame. (ZEUS Preliminary)

Phase Space

Similar phase space for all analyses

Azimuthal Asymmetries

$$
\begin{gathered}
100<\mathrm{Q}^{2}<8,000 \mathrm{GeV}^{2} \\
0.2<y<0.8 \\
0.01<x<0.1
\end{gathered}
$$

Energy Flow Objects

$$
\mathrm{Pt}>0.15 \mathrm{GeV}, \theta>8^{\circ}
$$

Scaled Momentum (H1)

$$
100<\mathrm{Q}^{2}<20,000 \mathrm{GeV}^{2}
$$

$$
0.05<y<0.6
$$

Charged Particles
$\mathrm{Pt}>0.12 \mathrm{GeV}, 20^{\circ}<\theta<165^{\circ}$

Event Shapes
$196<\mathrm{Q}^{2}<40,000 \mathrm{GeV}^{2}$
$0.1<y<0.7$
\rightarrow Energy Flow
$4^{\circ}<\theta<177^{\circ}$

Scaled Momentum (ZEUS)
$160<Q^{2}<40,960 \mathrm{GeV}^{2}$ $0.0024<x<0.75$
Charged Particles
Pt $>0.15 \mathrm{GeV}, 20^{\circ}<\theta<164^{\circ}$

High $Q^{2}\left(>100 \mathrm{GeV}^{2}\right)$, reasonably large x \rightarrow single large scale " Q ", good place to test $p Q C D$

Hard scale: $Q^{2}=-q^{2}$

Born (α_{s}^{0})

$$
\operatorname{BGF}\left(\alpha_{s}^{1}\right)
$$

Monte-Carlo (LO ME)

LEPTO (Parton Showers + String)

ARIADNE (Colour Dipole Model + String)

NLO pQCD

Azimuthal Asymmetries
NLO - DISENT phenomenological had corr (MC)

Event shapes NLO - DISASTER + DISPATCH NLL resummation - DISRESUM analytical Power Corrections

Scaled Momentum
NLO - CYCLOPS Fragmentation Functions - $\mathrm{e}^{+} \mathrm{e}^{-}$fits

Azimuthal Asymmetries

$$
\frac{d \sigma^{e p \rightarrow e h X}}{d \phi}=\mathcal{A}+\mathcal{B} \cos \phi+\mathcal{C} \cos 2 \phi+\mathcal{D} \sin \phi+\mathcal{E} \sin 2 \phi
$$

$$
\begin{array}{ll}
<\cos \phi>=\frac{\mathcal{B}}{2 \mathcal{A}} & <\sin \phi>=\frac{\mathcal{D}}{2 \mathcal{A}} \\
<\cos 2 \phi>=\frac{\mathcal{C}}{2 \mathcal{A}} & <\sin 2 \phi>=\frac{\mathcal{E}}{2 \mathcal{A}}
\end{array}
$$

Azimuthal Asymmetries

Event Shapes

Breit Frame

Born Level $\left(\alpha_{s}{ }^{0}\right)$, current quark has no E_{T} Jets in the Breit frame are $O\left(\alpha_{s}\right)$

Provides clearest separation between particles from hard scattering and proton remnant. Allows for easy comparison with $\mathrm{e}^{+} \mathrm{e}^{-}$data current region energy scale is Q
$\boldsymbol{\tau}=\mathbf{1}-\boldsymbol{T}_{\gamma}$ with $\boldsymbol{T}_{\gamma}=\frac{\sum_{h}\left|\vec{p}_{z, h}\right|}{\sum_{h}\left|\overrightarrow{p_{h}}\right|}$
$\tau_{C}=1-T_{C}$ - thrust along the axis maximising T (like in $e^{+} e^{-}$)
$\boldsymbol{B}=\frac{\sum_{h}\left|\vec{p}_{t, h}\right|}{2 \sum_{h}\left|\vec{p}_{h}\right|}-$ Jet Broadening
$\rho=\frac{\left(\sum_{h} E_{h}\right)^{2}-\left(\sum_{h} \vec{p}_{h}\right)^{2}}{\left(2 \sum_{h}\left|\vec{p}_{h}\right|\right)^{2}}-$ Jet inv. mass
$C=\frac{3}{2} \frac{\sum_{h, h^{\prime}}\left|\vec{p}_{h}\right|\left|\vec{h}_{h^{\prime}}\right| \sin ^{2} \theta_{h, h^{\prime}}}{\left(\sum_{h}\left|\vec{p}_{h}\right|\right)^{2}}$
sums extend over all particles (energy flow) in current hemisphere of the Breit frame
$\rightarrow 0$ for Born Level
>0 for higher orders

Event Shapes

Fit of NLO $+\mathrm{NLL}+\mathrm{PC}$ to data Theory has limited range of applicability

Extrapolation of fit to "unsafe" regions seems to work

Except for highest Q bin exprimental errors really small. Tc = 1-Tc :Thrust along the axis Maximising T

Event Shapes

α_{0} : effective non-perturbative coupling from power corrections. Theory expects $\cong 0.5$

$$
\alpha_{0}=0.476 \pm 0.008(\text { exp })+0.018(\text { theo }),
$$

α_{0} universal to about $\pm 10 \%$

$$
\alpha_{s}(m z)=0.1198 \pm 0.0013(\exp)+0.0056 \text { (theo), }
$$

Scaled Momentum

$$
x_{p}=\frac{\left(2 P_{h}\right)}{Q}
$$

$D\left(x_{p}\right)=\frac{1}{N_{\text {event }}} d n / d x_{p}$
$X_{p}=$ scaled momentum variable
Q/2 = Scale in current region of Breit Frame
$\mathrm{Ph}=$ momentum of charged particle in current region of Breit frame

$D(x p)=$ event normalised, charged particle, scaled momentum distribution

Scaled Momentum

Pretty good agreement between ep and $\mathrm{e}^{+} \mathrm{e}^{-}$!

high Q^{2} and small x_{p}

 reason unclearlow Q^{2}, mid x_{p}. expected to be due to BGF kinematics

producing empty

 current regionNB: suppressed zeros

Scaled Momentum

Pretty good agreement between ep and $\mathrm{e}^{+} \mathrm{e}^{-}$!

low Q^{2}, mid x_{p}. expected to be due to BGF kinematics

producing empty

 current regionNB: suppressed zeros

Scaled Momentum

Scaled Momentum

Fragmentation

 functions (KKP, KRETZER, AKK) taken from fits to $\mathrm{e}^{+} \mathrm{e}$ - data

Sensitivity to different FF

NLO theory does not describe the scaling violations seen in data

Scaled Momentum

ZEUS

black points new High Q ${ }^{2}$ analysis full HERA I+II stats $\sim 0.5 \mathrm{fb}^{-1!}$
red points old low Q^{2} analysis
Similar picture as seen by HI

Scaled

Momentum

summary:

Summary

- HERA provides a rich source of data for studies of the hadronic final state.
- Azimuthal Asymmetries : NLO better that MC at describing data but still fails to describe the magnitude of the asymmetries.
- Event shapes: NLO + NLL + PC describe the data well. Power corrections give universal α_{0}. Competitive value of α_{s} extracted, running of α_{s} also shown.
- Scaled Momentum: Broadly supports quark fragmentation universality between $\mathrm{e}^{+} \mathrm{e}^{-}$and ep. NLO fails to describe the scaling violations seen in the data.

Backup

Event shapes in Breit Frame

-Event shapes F are defined such that $F \rightarrow 0$ for pencil-like hadron configurations aligned with z-axis.
-Born level quark in Breit Frame has $p_{T}=0$ so its fragments produce $F \approx 0$

- Multijet configurations produce $F>0$ in extreme $F \approx 1$
$\begin{aligned} & \tau=1-\frac{\sum_{h}\left|\vec{p}_{z, h}\right|}{\sum_{h, l}\left|\vec{p}_{h}\right|} \\ & B=\frac{\sum_{h}\left|\vec{p}_{t, h}\right|}{2 \sum_{h}\left|\vec{p}_{h}\right|}\end{aligned}$
Z-axis parallel to exchanged boson
Reference to axis external to HFS - sensitive to quark recoil effect due to $Q C D$ radiation
τ_{c} : thrust a la $e^{+} e^{-} ; z \|$ axis maximizing thrust
ρ : Jet invariant mass
C-parameter, hadron-hadron correlation

All event shapes are normalized to total momentumless sensitive to uncertainty of hadronic calorimeter scale!
J. Turnau Event Shapes
\star Introduce effective non-pert. coupling $\alpha_{0}=\frac{1}{\mu_{I}} \int_{0}^{\mu_{I}} \alpha_{e f f}(k) d k\left(\alpha_{0}=\alpha_{s}\right.$ at $\mu_{I}=2 \mathrm{GeV}$) (theory predicts universal $\alpha_{0} \simeq 0.5$)
\star PC (Dokshitzer at al.): non-pert. corrections (suppressed by powers of $1 / Q$) obtained from first principles

- for distributions $\frac{1}{\sigma} \frac{d \sigma(F)}{d F}=\frac{1}{\sigma} \frac{d \sigma^{\mathrm{PQCD}}\left(F-a_{F} \mathcal{P}\right)}{d F}$
- for mean values $\langle\boldsymbol{F}\rangle=\langle\boldsymbol{F}\rangle^{\mathrm{PQCD}}+\boldsymbol{a}_{\boldsymbol{F}} \mathcal{P} \quad$ (with universal PC term \mathcal{P})
\star Complete description for \boldsymbol{F} : NLO+NLL+PC
Recent progress in theory (as compared to previous round of event shape analyses in DIS) - resummation of large log terms and matching it to fixed order NLO (DISRESUM package by Dasgupta and Salam, 2002)
\star Limitations: very low $\boldsymbol{F}\left(\boldsymbol{F} \leq a_{F} \mathcal{P} \sim \mu_{I} / Q\right)$ and very high \boldsymbol{F} (substantial HO corr.)

II \Rightarrow Main aim of the analysis: check the validity of PC concept and universality of α_{0} By product: yet another method/observables to extract $\alpha_{s}\left(M_{Z}\right)$

Scaled Momentum

Scaled Momentum

Scaled Momentum

ZEUS

Scaled Momentum

ZEUS

