Spin Asymmetry at Large x_F and $oldsymbol{k}_\perp$

Matti Järvinen

University of Helsinki

EPS HEP 2007 — Manchester July 20, 2007

[Paul Hoyer and MJ, hep-ph/0611293]

Outline

 \Box Single spin asymmetry in $p^{\uparrow}p \rightarrow \pi X$

- Definitions
- Experimental data
- \Box Large x_F coherence effects

 $\square p^{\uparrow}p \rightarrow \pi X$ at large x_F : sample calculation

Single spin asymmetry (SSA)

- Single spin asymmetry = dependence of a cross section on a single measured spin
- $\square \text{ Parity} \Rightarrow \text{transverse spin for } a + b \rightarrow c + d \text{ or}$ $a + b \rightarrow c + X$

Size of the SSA: the analyzing power $(|A_N| \le 1)$

$$A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \operatorname{Im}[\mathcal{M}_{\to}\mathcal{M}_{\leftarrow}^*]$$

Helicity flip and a dynamical phase required

Transverse SSA in $p^{\uparrow}p \rightarrow \pi(x_F, k_{\perp}) + X$

Data for $p^{\uparrow}p \to \pi(x_F, \mathbf{k}_{\perp}) + X$

FNAL-E704 data ($\sqrt{s} = 20$ GeV, $k_{\perp} \sim$ 1-2GeV): [PLB261(1991)201, PLB264(1991)462]

STAR data: A_N for π^0 production at $\sqrt{s} = 200 {\rm GeV}$

Failure of PQCD for forward π^0

 $x_F \simeq 0.8 \Rightarrow$ Distribution and fragmentation functions with $x, z \sim 0.9$

NLO PQCD fails to produce the total cross-section for forward $pp \rightarrow \pi^0 X$ for $\sqrt{s} = 52.8$ GeV [Bourrely, Soffer EPJC36(2004)371]

PQCD predictions and STAR results

STAR total cross section is consistent with PQCD

However, the predicted behavior $A_N \propto \Lambda_{QCD}/k_{\perp}$ is not seen

Coherence effects at large x_F

□ Large x_F coherence effects studied in (unpolarized) Drell-Yan $\pi p \rightarrow \mu^+ \mu^- X$

Physics at large x_F involves the full (multiquark) projectile wave function: Single quark factorization fails [Berger & Brodsky, PRL42(1979)940]

Expected longitudinal polarization of the γ^* at large x_F later seen in experiments [Conway *et al.*, PRD39(1989)92]

Large x_F dynamics

The lifetime $\tau = 1/\Delta E$ of a Fock state is determined by the ΔE *wrt.* the proton

$$P^+\Delta E = m_p^2 - \sum_i \frac{k_{i\perp}^2 + m_i^2}{x_i} \quad \text{with} \quad \sum_i x_i = 1$$

if one of the constituents carries a large momentum fraction $x\sim x_F
ightarrow 1$ then other $x_j\sim (1-x_F)
ightarrow 0$

$$\Rightarrow P^+ \Delta E \sim \frac{\Lambda_{QCD}^2}{1 - x_F}$$

A hard quark (x fixed, k_{\perp} large) contributes $P^+ \Delta E \sim k_{\perp}^2$ \Rightarrow Factorization requires $\Lambda_{QCD}^2/(1-x_F) \ll k_{\perp}^2$

Large x_F dynamics

We study $p^{\uparrow}p \to \pi(x_F, \mathbf{k}_{\perp}) + X$ for $k_{\perp} \to \infty$ with $k_{\perp}^2(1 - x_F)$ fixed, $k_{\perp}^2(1 - x_F) \sim \Lambda_{QCD}^2$ \Rightarrow No single quark factorization

Soft part of the amplitude (scale $\Lambda_{QCD}^2/(1-x_F)$) becomes coherent with the hard interactions (scale k_{\perp}^2)

 \Rightarrow naturally large A_N ?

A mechanism for a sizeable A_N in $p^{\uparrow}p
ightarrow \pi X$

 \Box Overall coherence at fixed $k_{\perp}^2(1-x_F)$

A sample calculation

U We drop one quark from the proton and the gluon exchange inside the pion

 \Box Only a single diagram, Abelian gluons and $s
ightarrow \infty$

□ The soft quark-antiquark pair has a (constituent) mass $M \sim \Lambda_{QCD}$ to allow the spin flip, otherwise massless quarks

Conclusion

 \Box Multiquark effects arise at $k_{\perp}^2(1-x_F)$ fixed

If soft and hard parts of the amplitudes are coherent large asymmetries may arise naturally

 \Box Our mechanism for A_N supported by the observed k_{\perp} dependence?