



### Hadronic Final States in e<sup>+</sup>e<sup>-</sup> Annihilation at BABAR

Andreas Petzold Uni Dortmund for the BABAR collaboration





bmb+f - Förderschwerpunkt BABAR

Großgeräte der physikalischen Grundlagenforschung



•  $e^+e^- \rightarrow exclusive hadronic final states at low <math>\sqrt{s}$  using initial state radiation

• 
$$e^+e^- \rightarrow K^+K^-\pi^+\pi^-\gamma, K^+K^-\pi^0\pi^0\gamma, 4K\gamma$$

• 
$$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma$$

•  $e^+e^- \rightarrow exclusive$  hadronic final states at  $\sqrt{s} = 10.58 \,\mathrm{GeV}$ 

• 
$$e^+e^- \rightarrow \rho^0 \rho^0, \phi \rho^0$$

- Observation of a long-range baryon number correlation in  $e^+e^- \to c\overline{c}$ 

# **Motivation for Studies at low** $\sqrt{s}$

- Hadronic contributions to  $a_{\mu}$  and  $\alpha_{\rm QED}$  are calculated from hadronic cross sections
- Knowledge of  $a_{\mu}^{had}$  and  $\Delta \alpha_{had}^5$  can be improved with better precision on cross sections at low  $\sqrt{s}$
- $a_{\mu}^{had}$  very sensitive to contributions from  $\sqrt{s} < 2 \, {
  m GeV}$
- $1 2 \,\mathrm{GeV}$  region dominated by  $4\pi$  state
  - Improved measurement of  $\pi^+\pi^-\pi^+\pi^-$  from BABAR PRD 71, 052001 (2005)
  - New focus on  $\pi^+\pi^-\pi^0\pi^0$







- **BABAR**:  $e^+e^- \sqrt{s} = 10.58 \, \text{GeV}$
- Radiative return to low  $\sqrt{s}$
- ISR photon  $\gamma$  is detected
  - Isolated photon  $E_{\rm CM}>3\,{\rm GeV}$
- Advantages over direct  $e^+e^-$ 
  - High transverse momentum of remaining hadronic event
  - High acceptance
  - Wide accessible energy range
  - No point-to-point systematic uncertainties

### Exclusive ISR Analysis Methods

- Require set of particles with specific ID recoiling against high energy photon
- Kinematic fit for each final state hypothesis
  - Reject ISR/non-ISR backgrounds based on  $\chi^2$
  - Select final state based on  $\chi^2$  of fits with different hypothesis



- Backgrounds estimated from combination of MC, x<sup>2</sup>control regions, PID control samples
- Measure cross sections and substructures in decays

### **ISR channels at BABAR**

- $J/\psi~{
  m in}~\mu^+\mu^-\gamma$  prd-rc 69, 011103 (2004)
- $\pi^+\pi^-\pi^0\gamma$  PRD 70, 072004 (2004)
- $\pi^+\pi^-\pi^+\pi^-\gamma, K^+K^-\pi^+\pi^-\gamma, K^+K^-K^+K^-\gamma$  PRD 71, 052001 (2005)
- $par{p}\gamma$  PRD 73, 012005 (2006)
- $3(\pi^+\pi^-)\gamma, K^+K^-2(\pi^+\pi^-)\gamma, 2\pi^02(\pi^+\pi^-)\gamma$  prd 73, 052003 (2006)
- $\phi 
  ho \gamma$  PRD-RC 74, 091103 (2006)
- $J/\psi \pi^+\pi^-\gamma, J/\psi K^+K^-\gamma, J/\psi \gamma\gamma\gamma$  arXiv:hep-ex/0608004v1
- Many more in progress

### This talk:

• 
$$K^+K^-\pi^+\pi^-\gamma, K^+K^-\pi^0\pi^0\gamma, K^+K^-K^+K^-\gamma$$
 To appear in PRD,  
arXiv:0704.0630

•  $\pi^+\pi^-\pi^0\pi^0\gamma$  BABAR preliminary



#### PRD-RC 74, 091103 (2006)



- Clear  $e^+e^- \rightarrow \phi f_0$  in both  $K^{+}K^{-}\pi^{+}\pi^{-}$  and  $K^{+}K^{-}\pi^{0}\pi^{0}$
- Structure in cross section consistent with new state  $m = 2.175 \pm 0.010 \pm 0.015 \,\text{GeV}/c^2$

 $\Gamma = 0.058 \pm 0.016 \pm 0.020 \,\text{GeV}/c^2$ 





- Glue ball model predicts large branching fraction Phys.Lett.B625:212,2005
- No Y(4260) signal found in any decay mode
- Upper Limit for  $\phi \pi^+ \pi^-$  decay

• 
$$\mathcal{B}_{Y \to \phi \pi^+ \pi^-} \cdot \Gamma_{ee}^Y < 0.4 \,\mathrm{eV}$$

Compare to

• 
$$\mathcal{B}_{Y \to J/\psi \pi^+ \pi^-} \cdot \Gamma_{ee}^Y = (5.5 \pm 1.0 \pm 0.8) \text{ eV}$$
 PRL 95, 142001 (2005)





• Branching fractions for 12 decay modes of  $J/\psi, \psi(2S)$ 

|                                                          | $J/\psi$ or $\psi(2S)$ Branching Fraction $(10^{-3})$ |                                      |     |
|----------------------------------------------------------|-------------------------------------------------------|--------------------------------------|-----|
|                                                          | Calculated, this work                                 | PDG2006                              |     |
| $\mathcal{B}_{J/\psi 	o K^+K^-\pi^+\pi^-}$               | $6.72 {\pm} 0.24 {\pm} 0.40$                          | $6.2 \pm 0.7$                        |     |
| ${\mathcal B}_{J/\psi 	o K^+K^-\pi^0\pi^0}$              | $2.52 \pm 0.20 \pm 0.25$                              | no entry                             | new |
| $\mathcal{B}_{J/\psi \to K^+K^-K^+K^-}$                  | $0.76{\pm}0.07{\pm}0.06$                              | $0.78\ {\pm}0.14$                    |     |
| , , ,                                                    |                                                       |                                      | -   |
| $\mathcal{B}_{J/\psi 	o K^{st 0} \overline{K}_2^{st 0}}$ | $2.7\ \pm 0.2\ \pm 0.2$                               | $6.7 \pm 2.6$                        |     |
| $\mathcal{B}_{J/\psi 	o K^{*0} \bar{K} * 0}$             | $0.11{\pm}0.04{\pm}0.01$                              | < 0.5 at 90% C.L.                    | new |
| $\mathcal{B}_{J/\psi \to \phi \pi^+ \pi^-}$              | $0.98{\pm}0.11{\pm}0.07$                              | $0.94\ \pm 0.15$                     |     |
| ${\cal B}_{J/\psi 	o \phi \pi^0 \pi^0}$                  | $0.58{\pm}0.15{\pm}0.06$                              | no entry                             | new |
| $\mathcal{B}_{J/\psi 	o \phi f_0}$                       | $0.54{\pm}0.21{\pm}0.05$                              | $0.32\ \pm 0.09\ (\mathrm{s}{=}1.9)$ |     |
| ${\cal B}_{J/\psi ightarrow \phi f_2}$                   | $0.50{\pm}0.08{\pm}0.04$                              | < 0.37 at 90% C.L.                   | new |
|                                                          |                                                       |                                      |     |
| ${\mathcal B}_{\psi(2S)	o K^+K^-\pi^+\pi^-}$             | $1.2\ \pm 0.2\ \pm 0.08$                              | $0.72\ {\pm}0.05$                    |     |
| ${\cal B}_{\psi(2S)	o\phi\pi^+\pi^-}$                    | $0.27{\pm}0.11{\pm}0.02$                              | $0.113{\pm}0.029$                    |     |
| $\mathcal{B}_{\psi(2S) \to \phi f_0}$                    | $0.26{\pm}0.12{\pm}0.03$                              | $0.090{\pm}0.033$                    |     |



- Very important channel for  $a_{\mu}, \alpha_{\text{QED}}$
- Preliminary precision:
  - 8% in peak hope to achieve 5%
- Cross section
  - Structures:  $\rho(1450), \rho(1700), J/\psi, \psi(2S)$

m(π<sup>+</sup>μ)[GeV/c<sup>2</sup>]

0.5

0.25

0.25

0.5

0.75

- Peak at  $2.050 \,\mathrm{GeV}$  under study
- Intermediate states in  $\pi^+\pi^-\pi^0\pi^0$ 
  - $\omega \pi^0 \ a_1(1260)\pi$
  - Previously unknown contributions from  $\rho^+ \rho^-$  and  $f_0(980) \rho^0$

MC Generator: H. Czyz, H. Kuehn, Eur.Phys.J. C18 (2001) 497



## ${igsidentsizes} {igsident Cross Section and } a_{\mu}$

- **Below** 1.4 GeV
  - Good agreement with SND
  - Improved accuracy
- **Above** 1.4 GeV
  - Huge improvement in precision with small point-to-point uncertainties
  - Allows to fix scale below  $1.4\,{
    m GeV}$
  - 1st measurement above  $2.4\,{
    m GeV}$
- Implication for  $a_{\mu}$ 
  - Final BABAR result will improve the error of the  $\pi^+\pi^-\pi^0\pi^0$  contribution
  - Discrepancy between experiment and theory will remain





### Exclusive Final States at 10.58GeV

- $ho^+
  ho^-$  seen in  $\pi^+\pi^-\pi^0\pi^0$ 
  - Provides new, stringent test of QCD
- $\phi\eta$  seen in  $K^+K^-\gamma\gamma$ 
  - Relates to puzzle of the large double charmonium rates

$$ho^0 
ho^0$$
 observed in  $\pi^+ \pi^- \pi^+ \pi^-$   
 $\phi 
ho^0$  observed in  $K^+ K^- \pi^+ \pi^-$  This talk









## Angular Distribution Study

- $\rho^0, \phi$  production angle  $\theta^*$ 
  - TVPA prediction of  $\frac{1+\cos^2\theta^*}{1-\cos^2\theta^*}$  consistent with data
  - SVPA: flat,  $\sin^2 \theta^*$ ,  $1 + \cos^2 \theta^*$ , ...
- Decay helicity angles
  - TVPA predicts transverse polarization,  $\sin^2 \theta_{\rm H}$  distribution, consistent with data
- Fiducial cross sections
  - $\sigma_{\rm fis}(e^+e^- \to \rho^0 \rho^0) = 20.7 \pm 0.7 \pm 2.7 \,{\rm fb}$

• 
$$\sigma_{\rm fis}(e^+e^- \to \phi \rho^0) = 5.7 \pm 0.5 \pm 0.8 \,{\rm fb}$$

- Agree with vector-dominance twophoton exchange arXiv:hep-ph/0606155v1
- 1st observation of non-SVPA processes in  $e^+e^-$





- BABAR/PEP-II is a charm factory
- New charm states
  - Y(4260) X(3872) Y(3940) See talk by G. Cibinetto
- Charmed baryons
  - Precision measurement of  $\Lambda_c$  mass PRD 72, 052006 (2005)
  - $\Lambda_c$  spectrum inconsistent with models PRD 75, 012003 (2007)
  - New  $\Xi_c$  baryons See talk by T. Schroeder
  - Study events with  $\Lambda_c \overline{\Lambda}_c$  pairs **BABAR** preliminary This talk





- Local baryon number conservation observed in  $p\bar{p}, A\overline{A}$
- CLEO reports excess of events with  $\Lambda_c^+ \overline{\Lambda}_c^-$  pairs PRD 63, 112003 (2001) •  $\Lambda_c^+ \overline{\Lambda}_c^-$  are leading particles – new model required?
- Analysis strategy
  - Reconstruct  $\Lambda_c^+$  in  $pK^-\pi^+, pK_s^0$
  - Reject  $\Upsilon(4S)$  decays by  $p_{\Lambda}^*>2.3\,{\rm GeV}/c$
- Observe  $649 \pm 31$   $\Lambda_c^+ \overline{\Lambda}_c^-$  events
  - Expect  $\approx 150$  events
  - Ratio of 4.2 consistent with CLEO





- X system contains few baryons
  - No large amounts of undetected  $n\bar{n}$
- Only  $13 \pm 8$  4-baryon events
  - Expect  $\approx 150$
- Data inconsistent with pair production of known states or new/exotic states



- Inclusive distributions consistent with jet-like events
  - Long-range baryon-antibaryon correlation
  - 2.2 units of rapidity difference on average
  - $2.6 \pm 0.2$  additional charged mesons per event



- BABAR makes many essential contributions to understanding of hadronic final states
- ISR methods give access to wide energy range
- Cross sections and decay structures of  $e^+e^- \rightarrow K^+K^-\pi^+\pi^-, K^+K^-\pi^0\pi^0, K^+K^-K^+K^-, \pi^+\pi^-\pi^0\pi^0$ have been measured with high precision
- First observation of C = +1 states  $\rho^0 \rho^0, \phi \rho^0$  consistent with two-virtual-photon annihilation
- Results for  $\Lambda_c^+ \overline{\Lambda}_c^- X$  compatible with long-range correlation









- Reconstruction efficiency ~25%
- Inclusive cross section
  - Consistent with direct measurement but better precision
- Substructure

• 
$$K^{*0}K\pi \quad \phi(1020)\pi^+\pi^- \ \phi(1020)f_0(980)$$



Sfficiency

5(K<sup>\*0</sup>(892)Kπ) (nb)

1.5

0.3

0.2

0.1

2

Efficiency

 $\sigma(e^+e^- \to K^{*0}K\pi)$ 

2.5

 $m(K^{+}K^{-}\pi^{+}\pi^{-}) (GeV/c^{2})$ 

3.5



- Reconstruction efficiency ~5-9%
- Dominant uncertainties
  - Background model 5-10%
  - $\chi^2_{KK\pi^0\pi^0}$  Distribution 6%
- Total systematic uncertainty
  - →  $10\% (m_{KK\pi^0\pi^0} < 3 \,\text{GeV}/c^2)$
  - $14\% (m_{KK\pi^0\pi^0} > 3 \,\text{GeV}/c^2)$
- Substructure
  - $K^{*\pm}K\pi^0$ dominant, no sign of  $K^{*+}K^{*-}$
  - $\phi(1020)\pi^0\pi^0$ No cross section due to high backgrounds
  - $\phi(1020)f_0(980)$





- Reconstruction efficiency ~20%
- Dominant uncertainty
  - Backgrounds 5-10%
- Total systematic uncertainty
  - $9\%(m_{4K} < 3 \,\text{GeV}/c^2)$
  - \*  $13\%(m_{4K} > 3 \,\text{GeV}/c^2)$
- Substructure
  - $\bullet \phi(1020)K^+K^-$





- $649 \pm 31$  signal events
  - $\times 4.2$  more than MC prediction (PYTHIA, HERWIG, UCLA)
- $13 \pm 8$  true 4-baryon events
  - ✤ Expect 155
  - 4-Baryon process strongly suppressed
- Heavier c-baryons
  - $\varSigma_c^{++/0}$  , excited  $\varLambda_c^+$
- Conclusions:
  - Not consistent with uncorrelated production of leading baryons
  - Baryon number conserved by leading baryon antibaryon pair

