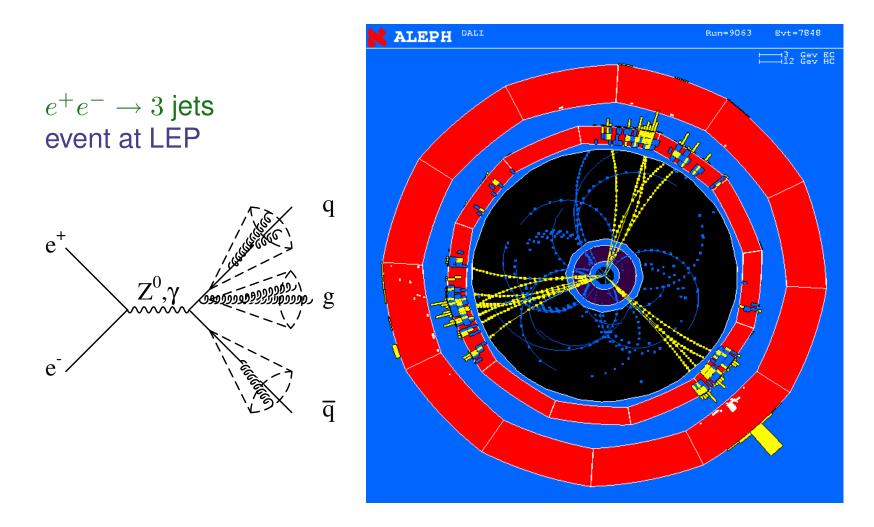
NNLO corrections to event shape variables in electron positron annihilation

Nigel Glover

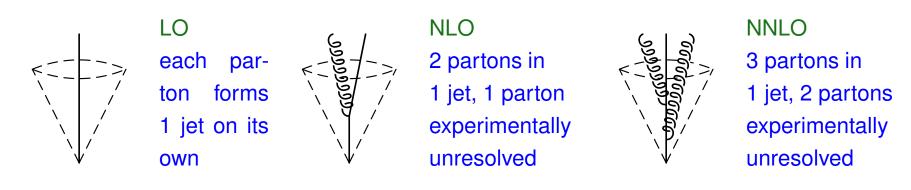
IPPP, Durham University



in collaboration with T. Gehrmann, A. Gehrmann-De Ridder and G. Heinrich

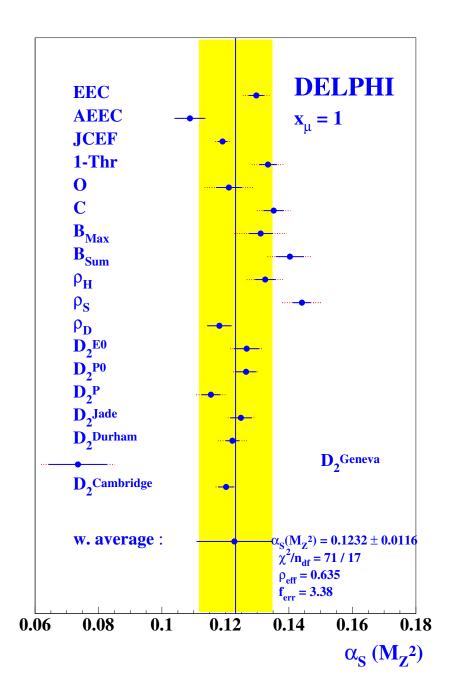
European Physical Society HEP07,

Manchester, July 2007


$e^+e^- \rightarrow 3$ jets and event shapes

 Testing ground for QCD in electron-positron annihilation: fixed order perturbation, infrared resummation, power corrections

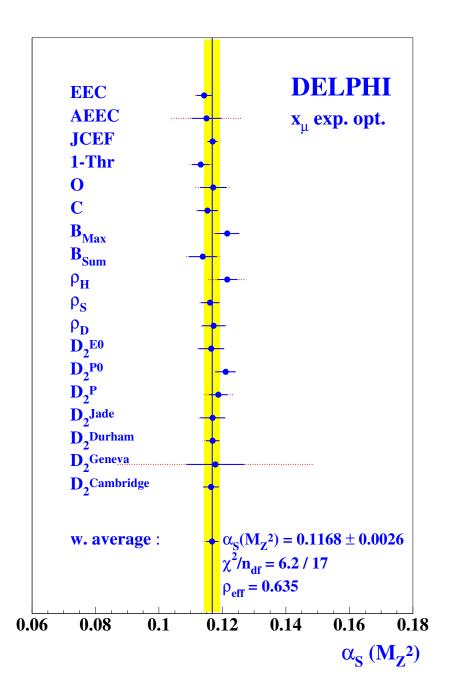
Jets in perturbative QCD


 Partons are combined into jets using the same jet algorithm (recombination procedure) in theory as in experiment

Current state-of-the-art: NLO

- X Current error on α_s from jet observables dominated by theoretical error Need for NNLO:
- \checkmark reduce error on α_s
- ✓ better matching of parton level and hadron level jets

Indication of importance of higher orders?

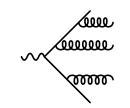


✓ Fitting event shapes by varying $\alpha_s(M_Z)$ yield large variations

 $\alpha_s(M_Z) = 0.123 \pm 0.012$

- ✓ e.g. $1 T \Rightarrow \alpha_s(M_Z) \sim 0.133$
- ✓ A hint that missing higher order terms are large?

Indication of importance of higher orders?

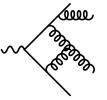

- ✓ Try to estimate higher order effects by varying both $\alpha_s(M_Z)$ and renormalisation scale μ
- ✓ Much more consistent set of $\alpha_s(M_Z)$

 $\alpha_s(M_Z) = 0.1165 \pm 0.0026$

- ✓ ... but extreme variation in fitted values of μ between $0.005M_Z$ and $0.5M_Z$
- ✓ Is this meaningful? Only NNLO can decide.


Ingredients of NNLO calculation

- ✓ Two-loop matrix elements
 - $|\mathcal{M}|^2_{2}$ -loop,3 partons
- One-loop matrix elements
 - $|\mathcal{M}|^2_{1-loop,3+1}$ partons
- ✓ Tree level matrix elements
 - $|\mathcal{M}|^2_{\text{tree},\text{3+2 partons}}$



implicit infrared poles due to double unresolved radiation

- ✓ Infrared Poles cancel in the sum
- ✓ Divergences must be extracted before the jet algorithm can be applied
 - \Rightarrow Subtraction formalism needed

explicit infrared poles from loop integrals

explicit infrared poles from loop integral and implicit infrared poles due to single unresolved radiation

Infrared Subtraction at NNLO

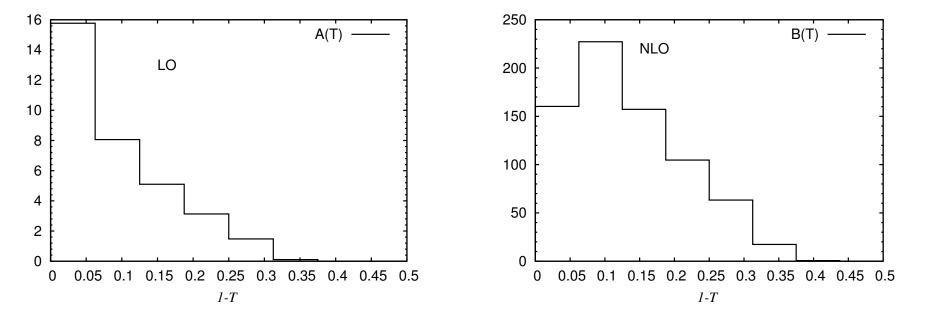

Structure of NNLO 3-jet cross section:

$$d\sigma_{NNLO} = \int_{d\Phi_5} \left(d\sigma_{NNLO}^R - d\sigma_{NNLO}^S \right) + \int_{d\Phi_4} \left(d\sigma_{NNLO}^{V,1} - d\sigma_{NNLO}^{VS,1} \right) + \int_{d\Phi_3} d\sigma_{NNLO}^{V,2} + \int_{d\Phi_5} d\sigma_{NNLO}^S + \int_{d\Phi_4} d\sigma_{NNLO}^{VS,1} ,$$

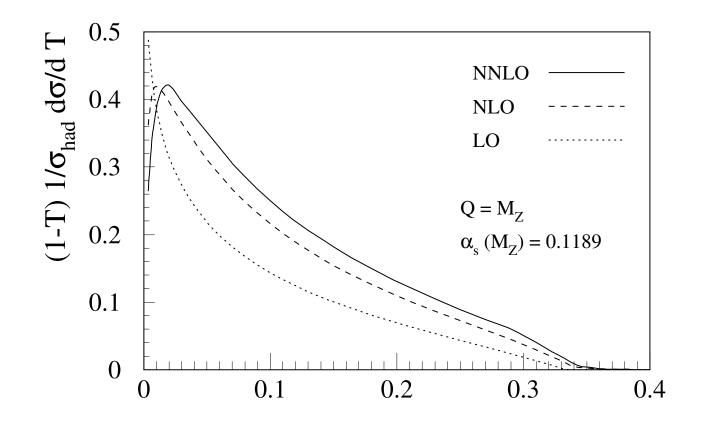
- ✓ $d\sigma^{S}_{NNLO}$: real radiation subtraction term for $d\sigma^{R}_{NNLO}$
- ✓ $d\sigma_{NNLO}^{VS,1}$: one-loop virtual subtraction term for $d\sigma_{NNLO}^{V,1}$
- ✓ $d\sigma_{NNLO}^{V,2}$: two-loop virtual corrections

Each line above is finite numerically and free of infrared ϵ -poles

Thrust as an example



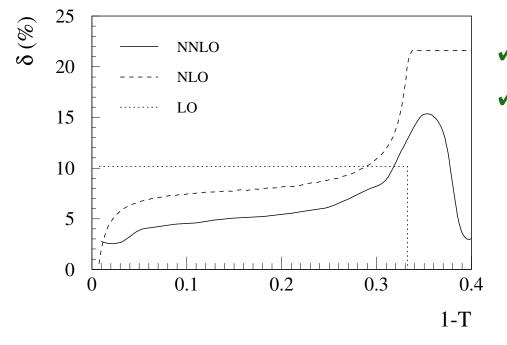
Perturbative expansion for Thrust


$$(1-T)\frac{1}{\sigma_{\text{had}}}\frac{\mathrm{d}\sigma}{\mathrm{d}T} = \left(\frac{\alpha_s}{2\pi}\right)A(T) + \left(\frac{\alpha_s}{2\pi}\right)^2\left(B(T) - 2A(T)\right) \\ + \left(\frac{\alpha_s}{2\pi}\right)^3\left(C(T) - 2B(T) - 1.64A(T)\right)$$

with LO contribution A(T), NLO contribution B(T)

Ellis, Ross, Terrano

Thrust distribution


✓ enhancement by around (15-20)% over the range 0.03 < (1 - T) < 0.33

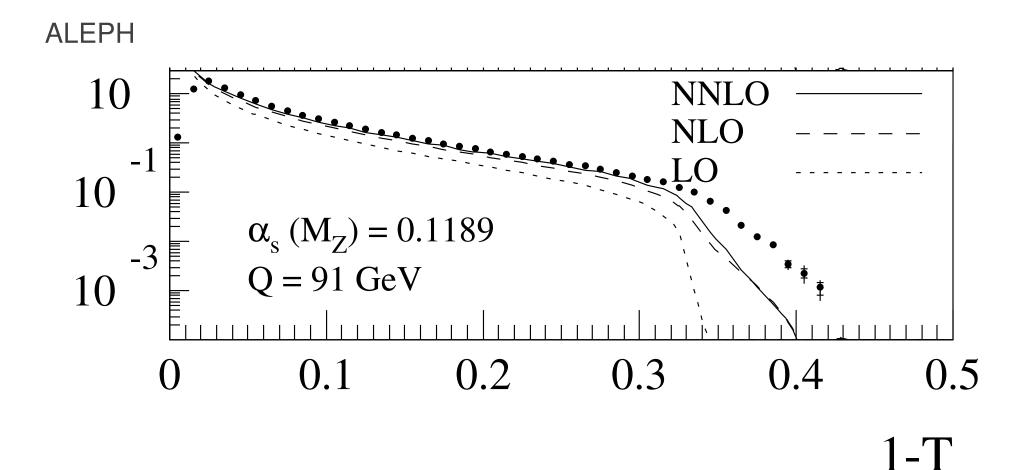
- ✓ $T \rightarrow 0$ region influenced by large $\ln(1 T)$ effects
- ✓ (1 T) > 0.33 kinematically forbidden at LO

Gehrmann, Gehrmann-De Ridder, EWNG, Heinrich, arXiv:0707.1285

Theoretical uncertainty

Estimate theoretical uncertainty by varying the renormalisation scale

vary $\mu = [M_Z/2, 2M_Z]$


 determine minimal and maximal values

$$\delta = \frac{\max_{\mu}(\sigma(\mu)) - \min_{\mu}(\sigma(\mu))}{2\sigma(\mu = M_Z)}$$

- ✓ inclusion of NNLO corrections stabilizes the prediction
- \checkmark $~\delta$ is reduced by almost a factor two between NLO and NNLO

Gehrmann, Gehrmann-De Ridder, EWNG, Heinrich, arXiv:0707.1285

Comparison with data

✓ fixed order perturbative prediction now closer to data with $\mu = M_Z$

 \Rightarrow refit of α_s from data required (and is in progress)

Gehrmann, Gehrmann-De Ridder, EWNG, Heinrich, arXiv:0707.1285

NNLO corrections to event shape variables in electron positron annihilation - p.12

- Numerical implementation of parton level NNLO code for three-jet event shape variables now completed and checked
 - ✓ Based on EERAD2 code for $e^+e^- \rightarrow 4$ jets

Campbell, Cullen, EWNG

- Two-loop matrix elements computed in terms of 2-d harmonic polylogarithms
- Infrared cancellation scheme based on 3 and 4 parton antenna functions, derived from physical matrix elements
- ✓ first results obtained for thrust distribution
- ✓ application to other event shapes in progress
- ✓ NNLO determination of $\alpha_s(M_Z)$ from LEP event shape data ongoing