Forward jet production @ HERA: a challenge for QCD

rindhammer. MPI Munich

19-25, Manchester

Julv

7/51

amics at low **x**

- incl. forward jets

- forward jet + dijets

173

. 11

UnD

88888

8

u

Parton dynamics at low x in ep collisions

- different approximations to the summation of the perturbative expansion of parton evolution
 - **DGLAP** $\sum (\alpha_s \ln Q^2)^n$
 - strong ordering in virtuality, i.e. $k_{t,1}^2 \ll k_{t,2}^2 \ll ... \ll Q^2$
 - weak ordering in x, i.e. $x_1 > x_2 > ... > x_{Bi}$
 - works very well at large Q^2 ; expected to fail at low Q^2 and x
 - **BFKL** $\sum (\alpha_s \ln 1/x)^n$
 - random walk in kt
 - strong ordering in x, i.e. $x_1 \gg x_2 \gg ... \gg x_{Bi}$
 - expected to work well at low x
 - CCFM $\alpha_s \ln Q^2$ & $\alpha_s \ln 1/x$
 - angular ordering, i.e. $\theta_1 \ll \theta_2 \ll \dots \ll \theta_n$
 - expected to work at high Q² and low Q² and x
- novel QCD effects at lowest x when gluon density becomes very large (saturation, cgc, ...)

Q²

non-perturbative region

BFKL

Parton kinematics at HERA and LHC

LHC parton kinematics

- At the LHC at large Q^2 (M²) and $x \rightarrow$ take PDFs from HERA and evolve them with Q^2 using DGLAP.
- What about low x ? Are HERA data described by DGLAP down to low x ? If not, what are the implications for the LHC ?
- Are novel QCD effects like saturation, etc. observed ? What are the consequences for LHC ?
- F₂ measurements by H1 & ZEUS are described down to low x by DGLAP evIn. alone, but also when adding BFKL terms (e.g. see C.White, R.Thorne, DIS07 talk)
 - Look at more exclusive measurements with better sensitivity to BFKL effects

Forward jet measurements in DIS at HERA

- the following HERA I measurements by H1 and ZEUS will be discussed:
 - inclusive forward jets: dependence on x_{Bj}, Q², E_{T,jet}, η_{jet}
 - **forward jet + dijet: dependence on** $\Delta \eta_1$, $\Delta \eta_2$ and on x_{Bj} , ...
- they are compared to
 - NLO QCD calculations (implementing collinear factorisation and DGLAP)
 - models implementing different QCD based assumptions

NLO QCD calculations

	DISENT		NLOJET++	
	H1	ZEUS	H1	ZEUS
μ _R ²	< p _{T,dijet} ² >	Q ²	$(p_{T,jet1}^2 + p_{T,jet2}^2 + p_{T,fwdjet}^2)/3$	Q ²
μ _F ²	< p _{T,fwdjet} ² >	Q ²	$(p_{T,jet1}^2 + p_{T,jet2}^2 + p_{T,fwdjet}^2)/3$	Q ²
proton PDF	CTEQ6M	CTEQ6M	CTEQ6M	CTEQ6M

hadronization corrections are applied to these calculations

QCD Models based on DGLAP, CCFM & CDM

Forward jets in DIS

- in DGLAP the strong ordering in virtuality gives softest pt gluon closest to proton
- suppress DGLAP: p_{T,jet}² ≈ Q²
- in BFKL the gluon p_T close to the proton can be hard; strong ordering occurs in x
- enhance BFKL: x_{jet} >> x_{Bj}

- measure forward jet as close to the proton as possible
 - **x**_{Bj} as small as possible
- $p_{T,jet}$ as small as possible, since $p_{T,jet}^2 \approx Q^2$ forces Q^2 to increase, which in turn increases min. x_{Bj}

Incl. forward jet requirements

	H1	ZEUS
Q ² [GeV ²]	5 - 85	20 - 100
У	0.1 - 0.7	0.04 - 0.7
ХВј	10 ⁻⁴ - 4 10 ⁻³	4 10 ⁻⁴ - 5 10 ⁻³
р _{Т,jet} [GeV]	3.5	5
η _{jet} (θ _{jet})	1.74 - 2.79 (20° - 7°)	2 - <mark>4.3</mark> (15.4° - 1.6°)
Xjet	> 0.035	> 0.036
$r = p_{T,jet}^2/Q^2$	0.5 - 5.0	0.5 - 2.0

- ZEUS: DESY-07-100 (July 2007) submitted to EPJ C
- H1: EPJ C46 (2006) 27

significantly increased coverage with FPC !

Forward jets & NLO: do/dx_{Bj}

- H1 data exhibits steeper slope than ZEUS data due to lower Q² and x_{Bj}
- Large k-factor from LO to NLO; mainly due to kinematics I NLO more like LO
- at small x_{Bj} data clearly above NLO calc.
- higher order contributions are important in his phase space
- H1 indicates smaller theory scale error

Forward jets & QCD models: do/dxBj

- Rapgap (RG-DIR) & LEPTO fail to describe data
- RG-DIR+RES & CDM provide a reasonable description; CDM = ARIADNE (tuned)
- CASCADE with the unintegrated gluon densities set1 & set 2 also fails; shape is not described

Forward jets: $d^3\sigma/dx_{Bj}dQ^2dp_{T,jet}^2$ H1

- here we only compare data to NLO (for QCD models see paper)
- σ as a function of x_{Bj} in bins of $p_{T,jet}^2 Q^2$ (no cut on $r = p_{T,jet}^2/Q^2$)
- range and average r shown for each bin

- NLO in general below data
- Image: NLO better at high x_{Bj}, Q² and p_{T,jet}² (for jet with high p_{T,jet}² less energy left for gluon radiation)

Forward jets: $d^3\sigma/dx_{Bj}dQ^2d\eta_{jet}$ ZEUS

- here we only compare data to NLO (for models see paper)
- σ as a function of η_{jet} in bins of $E_{T,jet}^2 Q^2$ (no cut on r = $E_{T,jet}^2/Q^2$)
- NLO in general below the data as for H1
- **better at large** $E_{T,jet}^2$
- largest discrepancy seen in high Q² bin for E_{T,jet}² < 100 GeV² (region of multi-gluon emissions not included in NLO)

Forward jet & dijet requirements

- for the forward jet the same cuts are applied as already mentioned (except for p_{T,fwdjet} in case of H1) and no cut on p_{T,jet}²/Q²
- all other cuts are given here
- of the dijets the two jets with the highest E_T are taken
- the three jets are ordered in η_{jet} : $\eta_e < \eta_1 < \eta_2 < \eta_{fwd}$

	H1	ZEUS
р _{Т,fwdjet} [GeV]	6	5
р _{Т,јеt1,2} [GeV]	6	5
Ŋ jet1,2	η _e < η ₁ < η ₂ < η _{fwd}	-1.5 - 4.3

Forward jet & dijet

$$\Delta \eta_1 = \eta_2 - \eta_1$$
$$\Delta \eta_2 = \eta_{\text{fwd}} - \eta_2$$

- by applying the same p_{T,jet} cut to all three jets strongly k_T ordered emissions are disfavoured
- **jets are ordered in rapidity:** $\eta_e < \eta_1 < \eta_2 < \eta_{fwd}$
- x-sections are measured as a func. of $\Delta \eta_1$ and $\Delta \eta_2$ and as a func. of $\Delta \eta_2$ for two regions, i.e. $\Delta \eta_1 < 1$ and $\Delta \eta_1 > 1$
- if $\Delta \eta_1 = \eta_{q2} \eta_{q1}$ and small $rac{rac}{rac} x_g$ small)
- if Δη₁ large ☞ one may be sensitive to BFKL gluons between the dijets
- if Δη₂ small r jet 1 and jet 2 may be due to gluon radiation close in η to the fwd jet

Forward jet & dijet and NLO

ZEUS

resummation needed

Forward jet & dijet and QCD models

- ARIADNE (tuned) = CDM
- LEPTO≈RG-DIR
- RG-DIR+RES
- CDM describes data reasonably well
- RG-DIR & LEPTO fail completely, RG-DIR+RES fails at small Δη₂
- the breaking of k_T ordering is best modelled by CDM, but not by RG-DIR+RES contrib. a la DGLAP;
- fwd-jet + dijet sample
 allows to distinguish between
 RG-DIR+RES and CDM

Forward jet & dijet and QCD model CASCADE

ZEUS CASCADE s.1 CASCADE s.2

H1

CASCADE with
 current unintegrated
 gluon densities is not able
 to describe data

"Exclusive" trijets in DIS

- H1 preliminary result on trijets at low x and Q² (see also previous talk by Mara Soares)
- here we will look only at topologies of
 - I fwd-jet & 2 central jets and
 - 2 fwd-jets & 1 central jet
- DIS phase space
 - 5 < Q² < 80 GeV²
 - 0.1 < y < 0.7
 - 0.0001 < x_{Bj} < 0.01
- jet phase space (incl. k_T algo in γ^* p-frame)
 - E_{T,jet1,2,3} > 4 GeV
 - E_{T,jet1} + E_{T,jet2} > 9 GeV
 - -1 < η_{lab} < 2.5</p>
 - 1 jet has to be a fwd-jet
 - θ_{jet} < 20° (η_{jet} > 1.74)
 - x_{jet} > 0.035

2 event samples are studied

- 1 fwd-jet & 2 central jets

- central jets $-1 < \eta_{jet} < 1$

- 2 fwd-jets & 1 central jet

1 fwd-jet and one more with η_{iet} > 1

"Exclusive" trijets in DIS: dσ/dx_{Bj}

- 2 fwd-jets are mainly due to gluons according to MC studies (CDM)
- discrepancy at lowest x_{Bj} and forward rapidities is in a region where unordered gluon emissions are expected to be important !

Summary/Conclusion

- H1 and ZEUS provide new data on inclusive forward jets and forward jets + dijets
- ZEUS significantly extends pseudorapidity coverage, up to η = 4.3, by using their FPC
- CDM as implemented in ARIADNE (tuned) provides best description of all data (its gluon emissions are not ordered in k_T)
- NLO does not describe the data at low x_{Bj} , Q^2 , E_{Tjet} and small $\Delta \eta_1$ and $\Delta \eta_2$, where multiple gluon emissions are important
- LO DGLAP models with parton showers, like LEPTO or RAPGAP-DIR, fail to describe the data
- Models which include additional resolved photon contributions do a lot better, but fail to describe the forward jet + dijet data
- CASCADE with currently used sets of unintegrated gluon densities fails to describe shape of most distributions; these data could be used to determine the ugd
- Finally, it would be very interesting to compare these data (and HERA II data) to a full NLO BFKL calculation, for which all ingredients have recently become available

Which low-x analyses should still be done? There are much more HERA II data on low-x on tape.

Extra Plots

Forward jets: d³σ/dx_{Bj}dQ²dp²T,jet H1

Data and CASCADE

- cross section as funct. of x_{Bj} in bins of $p_T^2 Q^2$ (no cut on p_T^2/Q^2)
- range and average r = p_T²/Q² shown for each bin
 - CASCADE under and overshoots the data

can the unintegrated gluon density be "improved" such that CASCADE can describe the data ?

Forward jets: d³σ/dx_{Bj}dQ²dp²_{T,jet} H1

Data RAPGAP direct & resolved CDM

- check 2 kinematic regions
- p²t ≈ Q² (r≈1), ordered emissions suppressed
- best described by DIR+RES (CDM not too bad)
- p²t >> Q² (r>>1), expect resolved contributions
- best described by DIR+RES (CDM not too bad)

"Exclusive" trijets in DIS

$d\sigma/dx_{Bj}$ for events with a forward π^0

- H1: EPJ C 36, 441 (2004); 21pb-1
 - 4.5 (2) < Q² < 15 (70) GeV²
 - 0.1 < y < 0.6
 - 5° < θ_π < 25°
 - x_π > 0.1
 - E*_{T,π} > 2.5 GeV
- NLO calc. by Fontannaz
 - includes virtual photon struct. in NLO
 - CTEQ6M, γ^* PDF also by Fontannaz
 - all scales = μ^2 = E^*_{T,π^2} + Q^2
 - Kniehl, Kramer, Pötter frag. function
- good description of the data
 all corrections LO dir to NLO dir , LO resolved to NLO resolved are large (at least for the chosen scale)

NLO from Aurenche et al., EPJ C 42, 43 (2005)

$d\sigma/dx_{Bj}$ for events with a fwd π^0 : scale dep.

NLO from Aurenche et al., EPJ C 42, 43 (2005)

- $\mu^2 = 0.5 (E^*_{T,\pi^2} + Q^2)$
- $\mu^2 = E^*_{T,\pi^2} + Q^2$
- $\mu^2 = 2(E^*_{T,\pi^2} + Q_2)$
- Iarge scale dependence; see detailed study in theory paper