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Parton dynamics at low x in ep collisions

·different approximations to the summation of the perturbative 
expansion of parton evolution

·DGLAP   ∑(αs ln Q2)n

·strong ordering in virtuality, i.e. kt,1
2 << kt,2

2 << ... << Q2 

·weak ordering in x, i.e. x1 > x2 > ... > xBj  

·works very well at large Q2; expected to fail at low Q2 
and x

·BFKL    ∑(αs ln 1/x)n 

·random walk in kt

·strong ordering in x, i.e.  x1 >> x2 >> ... >> xBj 

·expected to work well at low x

·CCFM   αs ln Q2    &    αs ln 1/x 

·angular ordering, i.e. θ1 << θ2 << ... << θn 

·expected to work at high Q2 and low Q2 and x

·novel QCD effects at lowest x when gluon density becomes 
very large (saturation, cgc, ...)
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Parton kinematics at HERA and LHC

· At the LHC at large Q2 (M2) and x → take 
PDFs from HERA and evolve them with Q2 
using DGLAP.

· What about low x ? Are HERA data 
described by DGLAP down to low x ? If not, 
what are the implications for the LHC ?

· Are novel QCD effects like saturation, etc. 
observed ? What are the consequences for 
LHC ?

· F2 measurements by H1 & ZEUS are 
described down to low x by DGLAP evln. 
alone, but also when adding BFKL terms 
(e.g. see C.White, R.Thorne, DIS07 talk)

· Look at more exclusive measurements with 
better sensitivity to BFKL effects 
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Forward jet measurements in DIS at HERA

·the following HERA I measurements by H1 and ZEUS will be discussed:

·inclusive forward jets:  dependence on  xBj, Q2, ET,jet, ηjet 

·forward jet + dijet: dependence on Δη1, Δη2 and on xBj, ...

·they are compared to 

·NLO QCD calculations (implementing collinear factorisation and DGLAP) 

·models implementing different QCD based assumptions 

4
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NLO QCD calculations

· hadronization corrections are applied to these calculations
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QCD Models based on DGLAP, CCFM & CDM
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Forward jets in DIS

· in DGLAP the strong ordering in virtuality 
gives softest pt gluon closest to proton

· suppress DGLAP: pT,jet
2 ≈ Q2

· in BFKL the gluon pT close to the proton 
can be hard; strong ordering occurs in x

· enhance BFKL: xjet >> xBj 
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xBj

evolution 
from large

forward jet

x = E
jet

jet
Ep

Bj (small)x

to small x

(large)
p

e e’

!

☛   measure forward jet as close 
to the proton as possible

☛   xBj  as small as possible

☛   pT,jet  as small as possible, since  
pT,jet

2 ≈ Q2  forces Q2 to increase, 
which in turn increases min. xBj  
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·ZEUS:  DESY-07-100 (July 2007)
submitted to EPJ C

·H1: EPJ C46 (2006) 27

Incl. forward jet requirements

8

H1 ZEUS
Q2 [GeV2] 5 - 85 20 - 100

y 0.1 - 0.7 0.04 - 0.7

xBj 10-4 - 4 10-3 4 10-4 - 5 10-3

pT,jet [GeV] 3.5 5

ηjet 
( θjet )

1.74 - 2.79
(20° - 7°)

2 - 4.3 
(15.4° - 1.6°)

xjet > 0.035 > 0.036

r = pT,jet
2/Q2 0.5 - 5.0 0.5 - 2.0

significantly increased coverage with FPC !
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Forward jets & NLO: dσ/dxBj 

·H1 data exhibits steeper slope than ZEUS data due to lower Q2 and xBj

·Large k-factor from LO to NLO; mainly due to kinematics  ☛  NLO more like LO

·☛  at small xBj data clearly above NLO calc.

·☛  higher order contributions are important in his phase space

·H1 indicates smaller theory scale error
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Forward jets & QCD models: dσ/dxBj 

·☛  Rapgap (RG-DIR) & LEPTO 
fail to describe data

·☛  RG-DIR+RES & CDM 
provide a reasonable 
description; CDM = ARIADNE 
(tuned)

·☛  CASCADE with the 
unintegrated gluon densities 
set1 & set 2 also fails; shape is 
not described
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 Forward jets: d3σ/dxBjdQ2dpT,jet
2

    H1

·here we only compare data to NLO 
(for QCD models see paper)

·σ  as a function of xBj in bins of  
pT,jet

2
 - Q2   (no cut on r = pT,jet

2/Q2) 

·range and average r shown for each 
bin

·☛  NLO in general below data

·☛  NLO better  at high xBj, Q2 and 
pT,jet

2  (for jet with high pT,jet
2
  less 

energy left for gluon radiation) 
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 Forward jets: d3σ/dxBjdQ2dηjet    ZEUS

·here we only compare data to 
NLO (for models see paper)

·σ  as a function of ηjet in bins of  
ET,jet

2
 - Q2   (no cut on r = ET,jet

2/Q2) 

·☛ NLO in general below the 
data as for H1

·☛  better at large ET,jet
2 

·☛  largest discrepancy seen in 
high Q2 bin for ET,jet

2 < 100 GeV2  
(region of multi-gluon emissions 
not included in NLO)

12
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Forward jet & dijet requirements

·for the forward jet the same cuts are 

applied as already mentioned (except 

for pT,fwdjet in case of H1)  and no 

cut on pT,jet
2 / Q2

·all other cuts are given here

·of the dijets the two jets with the 

highest ET are taken

·the three jets are ordered in ηjet :      

ηe < η1 < η2 < ηfwd

13

H1 ZEUS
pT,fwdjet [GeV] 6 5

pT,jet1,2 [GeV] 6 5

ηjet1,2 ηe < η1 < η2 < ηfwd -1.5  -  4.3
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Forward jet & dijet

· by applying the same pT,jet cut to all three jets 
strongly kT ordered emissions are disfavoured

· jets are ordered in rapidity: ηe < η1 < η2 < ηfwd 

· x-sections are measured as a func. of Δη1 
and Δη2 and as a func. of Δη2 for two 
regions, i.e. Δη1 < 1 and Δη1 > 1

· if  Δη1 = ηq2 - ηq1 and small ☛ xg small)

· if Δη1 large  ☛  one may be sensitive to 
BFKL gluons between the dijets

· if  Δη2 small  ☛  jet 1 and jet 2 may be due to 
gluon radiation close in η to the fwd jet

14

Δη1 = η2 - η1

Δη2 = ηfwd - η2
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Forward jet & dijet and NLO

·overall reasonable 
description of data by 
NLOJET++ with partly 
large scale uncertainty

·discrepancy at low Δη1 
and Δη2, i.e. where all 3 
jets tend to go fwd.

·☛  additional higher 
orders or BFKL 
resummation needed

15
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Figure 7: A schematic diagram of an event giving a forward jet and two additional hard jets.

These may stem from the quarks (q1 and q2) in the hard scattering vertex or from gluons in the

parton ladder. xg is the longitudinal momentum fraction carried by the gluon, connecting to the

hard di-jet system (in this case q1 and q2) .
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Figure 8: The cross section for events with a reconstructed high transverse momentum di-jet

system and a forward jet as a function of the rapidity separation between the forward jet and

the most forward-going additional jet, ∆η2. Results are shown for the full sample and for two

ranges of the separation between the two additional jets, ∆η1 < 1 and ∆η1 > 1. The data are
compared to the predictions of a three-jet NLO calculations from NLOJET++ (1 + δHAD). The
band around the data points illustrates the error due to the uncertainties in the calorimetric

energy scales. The band around the NLO calculations illustrates the theoretical uncertainties

in the calculations.
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Forward jet & dijet and QCD models

·ARIADNE (tuned) = CDM

·LEPTO ≈ RG-DIR

·RG-DIR+RES

·☛  CDM describes data 
reasonably well

·☛  RG-DIR & LEPTO fail 
completely, RG-DIR+RES 
fails at small Δη2 

·☛ the breaking of kT ordering 
is best modelled by CDM, but 
not by RG-DIR+RES contrib.  
a la DGLAP;  

·☛  fwd-jet + dijet sample 
allows to distinguish between 
RG-DIR+RES and CDM
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Forward jet & dijet and QCD model CASCADE

·☛  CASCADE with 
current unintegrated 
gluon densities is not able 
to describe data
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Figure 8: The cross section for events with a reconstructed high transverse momentum di-jet

system and a forward jet as a function of the rapidity separation between the forward jet and

the most forward-going additional jet, ∆η2. Results are shown for the full sample and for two

ranges of the separation between the two additional jets, ∆η1 < 1 and ∆η1 > 1. The data are
compared to the predictions of a three-jet NLO calculations from NLOJET++ (1 + δHAD). The
band around the data points illustrates the error due to the uncertainties in the calorimetric

energy scales. The band around the NLO calculations illustrates the theoretical uncertainties

in the calculations.
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L = 13.7 pb-1
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“Exclusive” trijets in DIS

·H1 preliminary result on trijets at low x and Q2   

(see also previous talk by Mara Soares)

·here we will look only at topologies of 

·1 fwd-jet   & 2 central jets and

·2 fwd-jets & 1 central jet

·DIS phase space

·5 < Q2 < 80 GeV2

·0.1 < y < 0.7

·0.0001  < xBj < 0.01

·jet phase space (incl. kT algo in γ*p-frame)

·ET,jet1,2,3 > 4 GeV

·ET,jet1 + ET,jet2 > 9 GeV

·-1 < ηlab < 2.5 

·1 jet has to be a fwd-jet

·θjet < 20°  (ηjet > 1.74)

·xjet > 0.035 
18

 2 event samples are studied

 - 1 fwd-jet  & 2 central jets
  - central jets  -1 < ηjet < 1

 - 2 fwd-jets & 1 central jet
  - 1 fwd-jet and one more   
    with ηjet > 1
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“Exclusive” trijets in DIS: dσ/dxBj

·2 fwd-jets are mainly due to gluons according to MC studies (CDM) 

·discrepancy at lowest xBj and forward rapidities is in a region 
where unordered gluon emissions are expected to be important !

19
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Summary/Conclusion
·H1 and ZEUS provide new data on inclusive forward jets and forward jets + dijets

·ZEUS significantly extends pseudorapidity coverage, up to η = 4.3, by using their FPC

·CDM as implemented in ARIADNE (tuned) provides best description of all data (its gluon emissions 
are not ordered in kT)

·NLO does not describe the data at low xBj, Q2, ETjet and small Δη1 and Δη2, where multiple gluon 
emissions are important

·LO DGLAP models with parton showers, like LEPTO or RAPGAP-DIR, fail to describe the data

·Models which include additional resolved photon contributions do a lot better, but fail to describe 
the forward jet + dijet data

·CASCADE with currently used sets of unintegrated gluon densities fails to describe shape of most 
distributions; these data could be used to determine the ugd

·Finally, it would be very interesting to compare these data (and HERA II data) to a full NLO BFKL 
calculation, for which all ingredients have recently become available

20

Which low-x analyses should still be done? 
There are much more HERA II data on low-x on tape. 
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Extra Plots

21



   Günter Grindhammer     HEP 2007                                                                                                                                                                              

 Forward jets: d3σ/dxBjdQ2dp2
T,jet    H1

· cross section as funct. of xBj in 
bins of pT

2 - Q2   (no cut on pT
2/

Q2)

· range and average r = pT
2/Q2 

shown for each bin

· ☛  CASCADE under and 
overshoots the data

· ☛  can the unintegrated gluon 
density be “improved” such 
that CASCADE can describe 
the data ? 
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 Forward jets: d3σ/dxBjdQ2dp2
T,jet    H1

· check 2 kinematic regions

• p2
t ≈ Q2  (r≈1), ordered 

emissions suppressed

• ☛   best described by        
DIR+RES (CDM not too bad)

• p2
t >> Q2  (r>>1), expect 

resolved contributions

• ☛   best described by       
DIR+RES (CDM not too bad) 
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“Exclusive” trijets in DIS

24

1 fwd-jet & 2 central jets 2 fwd-jets & 1 central jet
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dσ/dxBj for events with a forward π0 

·H1: EPJ C 36, 441 (2004); 21pb-1

·4.5 (2) < Q2 < 15 (70) GeV2

·0.1 < y < 0.6

·5° < θπ < 25°

·xπ > 0.1

·E*T,π > 2.5 GeV

·NLO calc. by Fontannaz

·includes virtual photon struct. in NLO

·CTEQ6M, γ* PDF also by Fontannaz

·all scales = μ2 = E*T,π2 + Q2

·Kniehl, Kramer, Pötter frag. function

25

NLO from Aurenche et al.,  EPJ C 42, 43 (2005)

☛   good description of the data
☛   all corrections LO dir to NLO dir , 

LO resolved to NLO resolved are 
large (at least for the chosen scale)

DIScoPHOX ?H1 data
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dσ/dxBj for events with a fwd π0 : scale dep.

·μ2 = 0.5 (E*T,π2 + Q2)

·μ2 = E*T,π2 + Q2

·μ2 = 2( E*T,π2 + Q2)

·☛ large scale 
dependence; see 
detailed study in 
theory paper

26

NLO from Aurenche et al.,  
EPJ C 42, 43 (2005)

H1 data


