

Inclusive Jet & Dijet Production at HERA

Maxime GOUZEVITCH Laboratoire Leprince-Ringuet Ecole Polytechnique - CNRS/IN2P3, France

DIS and Photoproduction Physical sensitivity

: momentum transfer

Q²

 $X_{p}(X_{\gamma})$: proton (photon) momentum fraction carried by interacting parton

M. Gouzevitch (Ecole Polytechnique, France) HEP2007, Manchester, 20/07/2007

Jet reconstruction

Longitudinally invariant kT algorithm

M. Gouzevitch (Ecole Polytechnique, France) HEP2007, Manchester, 20/07/2007

High precision data helps to discriminate between photon PDF parameterisations

Jets help constraining the gluon content of the proton

From Eur.Phys.J. C42 (2005)

Jets help constraining the gluon content of the proton 2-jet "direct" photoproduction cross section (H1)

Probing the gluon content of the proton 2-jet "direct" photoproduction cross section (H1)

High precision measurement in "optimised" exclusive topologies leads to an important constraint to the gluon structure function

Jets help constraining the gluon content of the proton

DIS Incl. jet and di-jet in DIS Q²>~100 GeV2 sensitivity to gluon in proton PDF gluon fraction (CTEQ6) dijets $(\log_{10}\xi = -1.25)$ 0.8 inclusive jets $(10 < E_{T,B}^{jet} < 14 \text{ GeV})$ X_p 0.6 0.4 0.2 \mathbf{X}_{p} Xn 0 10^{3} 10⁴ 10⁵ Q^2 (GeV²)

HERA I + part of HERA II data : 209 pb⁻¹ (previous measurement 82 pb⁻¹)

Probing gluon density up to high proton momentum fraction

M. Gouzevitch (Ecole Polytechnique, France) HEP2007, Manchester, 20/07/2007

High p_{T} inclusive jets sensitive to the proton PDF

M. Gouzevitch (Ecole Polytechnique, France) HEP2007, Manchester, 20/07/2007

40

High precision QCD measurement tool (proton PDF - α_s) Inclusive jet cross section in DIS (ZEUS)

NLO pQCD (DISENT): $\mu_F = Q$; $\mu_R = E_T$; Q; $\sqrt{E_T^2 + Q^2}$; PDF: CTEQ6

POLYTECHNIQUE

reduced jet phase space: $-0.8 < \eta_{lab}^{jet} < 2$

NLO pQCD (FastNLO):

 $\mu_{\rm F} = Q; \quad \mu_{\rm R} = E_{\rm T};$

HERAI - 65.4 pb⁻¹

HERA II - 320 pb⁻¹

experimental uncertainties ($\sim 6\%$):

- jet energy scale (calibration) $\sim 4\%$
- data correction model dependence ~2-3%

theory uncertainties (~5-10%):

- renormalization scale dependence (missing higher orders)
- PDF dependence

Partial cancellation of exp. syst. uncertainties: $\sim 7\% \rightarrow 6\%$ on multiplicities

 $= \sim 40\%$ reduction of experimental uncertainties on α_s

0.2 1.2 1.0r 0.8 10³

High Q² jet multiplicity Incl. jet normalized to DIS NC cross section (H1)

12

High Q2 jet multiplicity Incl. jet normalized to DIS NC cross section (H1)

Significant errors improvement at high Q2 and $\mathsf{E}_{\scriptscriptstyle T}$ in HERA II compared to HERA I

Low Q2 jets are promising QCD testing field Inclusive jet cross section in DIS (H1)

DIS phase space: $5 < Q^2 < 100 \text{ GeV}^2$ 0.2 < y < 0.7Jet phase space : $E_T > 5 \text{ GeV};$ $-1 < \eta _{lab}^{jet} < 2.5$ NLO pQCD (NLOJET ++) : $\mu_R = E_T$ $\mu_F = Q;$ PDF : CTEQ6.1M

Experimental errors improvement compared to previous publications Good agreement with NLO for Q² > 10GeV and E_T > 10 GeV (also in double differential) Rather large NLO uncertainty (Interesting phase space region if NNLO calculations available)

CONCLUSION

- 1) High p_T Jet production at HERA provides direct handle to structure of resolved photon and gluon density in proton
- 2) Wealth of new results in photoproduction and DIS (Inclusive and 2-jets):
 - 1) Higher statistics (first time HERA II data)
 - 2) Improved jet calibrations
- 3) Data are reasonably well described by NLO, theory uncertainties often larger than experimental errors
- 4) In specific kinematic regions new data will improve considerably the PDFs
- 5) Inclusive jet in DIS HERA I data was used by ZEUS and H1 collaborations for a high precision α_S common fit (*ZEUS Phys. Lett. B* 649 (2007), 12; H1- arXiv:0706.3722; "Alpha_S results fro HERA" by Claudia Glasman)

