Measurement of the spin structure functions $g_1^{p,d,n}$ and the gluon helicity $\Delta g/g$ at HERMES

•g₁ from inclusive longitudinal double-spin asymmetries • $\Delta g/g$ from high-p_t hadrons

g1: Inclusive DIS

Measured Inclusive Asymmetries

$$P_{zz} = 0.83 \pm 0.03 \qquad A_{zz} \sim 0.01 \qquad \Longrightarrow \frac{b_1^d}{F_1^d} = -\frac{3}{2}A_{zz}$$
(measured by HERMES)
$$\sigma = \sigma_{\text{unpol}} \left[1 + P_B P_z A_{\parallel} + \frac{1}{2} P_{zz} A_{zz} \right]$$
Deuterium
measured DIS cross section

inclusive asymmetry:

$$A_{\parallel} = \frac{\sigma^{\overrightarrow{\leftarrow}} - \sigma^{\overrightarrow{\Rightarrow}}}{\sigma^{\overrightarrow{\leftarrow}} + \sigma^{\overrightarrow{\Rightarrow}}} = \frac{1}{P_B P_z} \cdot \frac{\frac{N^{\overrightarrow{\leftarrow}}}{L^{\overrightarrow{\leftarrow}}} - \frac{N^{\overrightarrow{\Rightarrow}}}{L^{\overrightarrow{\Rightarrow}}}}{\frac{N^{\overrightarrow{\leftarrow}}}{L^{\overrightarrow{\Rightarrow}}} + \frac{N^{\overrightarrow{\Rightarrow}}}{L^{\overrightarrow{\Rightarrow}}}}$$

$$g_{1}(x,Q^{2}) = \frac{1}{1 - \frac{y}{2} - \frac{1}{4}y^{2}\gamma} \begin{bmatrix} Q^{4} \\ 8\pi\alpha^{2}y \end{bmatrix} \frac{\partial^{2}\sigma_{\text{unpol}}}{\partial x\partial Q^{2}} A_{\parallel}(x,Q^{2}) + \frac{y}{2}\gamma^{2}g_{2}(x,Q^{2}) \\ \frac{1}{2}\chi^{2} - \frac{1}{4}y^{2}\gamma \end{bmatrix}$$
kinematic factors param. meas. fac. param.

Unfolding of radiative effects

- Measured events have to be corrected for:
 Background tail (radiation from (quasi)-elastic)
 - Radiation from DIS and detector smearing
- •Event migration is simulated by Monte Carlo which includes a full detector description and a model for the cross section
- •The approach is independent on the model for the asymmetry in the measured region

hermes

g_1 : Results for p and d

- •HERMES points: stat. and syst. errors added in quadrature
 - Stat. uncertainties are diagonal elements of covariance matrix
 - Syst. uncertainties dominated by target and beam polarisation
- •Deuteron data:
 - Most precise published data in valence x region
- Proton data:
 - Stat. precision comparable to previous data
- •Q² different from SMC/COMPASS

g_1 : Results for p and d

g1 : Neutron results

$$g_{1}^{n} = \frac{2}{1 - \frac{3}{2}\omega_{D}} \cdot g_{1}^{d} - g_{1}^{p}$$

$$\omega_{D} = 0.05 \pm 0.01$$

- g₁ⁿ negative everywhere except at very high x
- Low-Q² data tends to zero at low x
 Contrary to SMC data at higher Q²

g₁ : Integrals

 $Q^2 = 5 \text{GeV}^2$, NNLO in $\overline{\text{MS}}$ scheme

g₁ : Integrals

 $dx g_1^d$

ing saturation in the deuteron integral:
Jse only deuteron data!

$$\left(1 - \frac{3}{2}\omega_D\right) \frac{1}{36} \left[4a_0 \Delta C_S^{\overline{MS}} + a_8 \Delta C_{NS}^{\overline{MS}}\right]$$

 $a_0 \stackrel{\overline{MS}}{=} \Delta \Sigma$
from hyperon beta decay
 $(a_8=0.586\pm0.031)$

$$Q^2 = 5 {\rm GeV}^2, {\rm NNLO} \text{ in } \overline{\rm MS}$$
 scheme

How to measure Δg ?

Indirect from scaling violation of g₁

for fixed target experiment small x-Q² lever arm

 Direct measurement: via processed with the gluon of the nucleon in the initial state
 Photon-Gluon-Fusion (PGF)

•Measure longitudinal double-spin asymmetries of high-pt hadrons vs p_t for:

"anti-tagged" data: scattered lepton not in acceptance (pt with respect to the beam axis)

"tagged" data: scattered lepton detected

inclusive pairs of charged hadrons

low statistics

Extraction Method

 Measured asymmetry is an incoherent superposition of different subprocess asymmetries:

$$A_{\parallel}^{\text{meas}}(p_t) = \sum_{i} f_i A_{\parallel}^i = f_{\text{Sig}} A_{\parallel}^{\text{Sig}} + f_{\text{Bg}} A_{\parallel}^{\text{Bg}} \qquad f_i = \frac{\sigma_i}{\sigma_{\text{tot}}}$$

Signal: Gluon of the nucleon in the initial state

$$A_{\parallel}^{\text{Sig}}(p_t) \propto \int_{x(p_t)} dx \, \sigma(x, p_t) \hat{a}(x, p_t) \frac{\Delta g(x)}{g(x)}$$

Background: all other sub-processes \longrightarrow MC

•Two methods to extract $\Delta g/g$

- Method I: $\Delta g(x)/g(x)$ = const
- Method II: $\Delta g(x)/g(x)=x(1+p_1(1-x)^2+p_2(1-x)^3)$

Models and Assumptions

•MC model

PYTHIA 6.2 ,tuned and adapted for HERMES data fragmentation process, exclusive ρ⁰ cross section (VMD)

provides

- relative contributions f_i of the background and signal subprocesses in the relevant p_t range
- background asymmetries and the hard subprocess asymmetries of the signal processes
 - -weight calculated for every MC event
 - -PDFs (unpol/pol): CTEQ5L/GRSV2000 (nucleon), SaS2/GRS (photon)
 - -Asymmetry assumptions for soft processes (soft VMD)
- Vary PDFs/assumptions for syst. error

Fractions and Asymmetries

Sub-process fraction

(anti-tagged data) Sub-process asymmetries on (using GRSV std.)

•DIS dominating at high pt

- •Signal processes are PGF and QCD2→2(g) (resolved photon)
- Background processes have (mostly) small and positive asymmetries
- |PGF| increasing with pt, negative (for positive dg/g from GRSV)

Asymmetries

 Anti-tagged data:
 Scattered lepton not in acceptance

- pt measured with respect to beam axis
- Curves from MC
 +asymmetry model
 using:
 - $\Delta g/g(x)=0:central$
 - ► Δg/g(x)=-I : upper
 - $\Delta g/g(x) = +1$: lower

Δg/g(x)=0 asymmetry is due to quarks only! Gluons become important for the cross section (asymmetry) above pt ≈ 1 GeV

∆g/g: Method I

assume $\Delta g(\mathbf{x})/g(\mathbf{x})$ const. over $\mathbf{x}: \langle \frac{\Delta g}{g} \rangle = \frac{1}{f_{\text{Sig}} \langle \hat{a} \rangle} \left[A_{\parallel}^{\text{meas}} - f_{\text{Bg}} A_{\parallel}^{\text{Bkg}} \right]$

- l point for $\sum p_t^2 > 2 {\rm GeV}$
- •Results for different data samples agree within statistics
- Dominating sample: Deuteron antitagged
 Used for Method II

∆g/g: World data

Black and blue curves: pQCD fits to g₁
Red curves (Method II): fit Δg(x)/g(x) such that

Sys. model uncert. dominating:
PDFs
PYHTIA model

Conclusions

- •HERMES has measured g_1 for proton and deuteron for 0.0041<x<0.9 and 0.18<Q²<20 GeV²
- Proton data precision is comparable with CERN and SLAC
 Deuteron data is the most precise so far
- •The deuteron integral is observed to saturate

 $a_0 = 0.330 \pm 0.011$ (theor) ± 0.025 (exp.) ± 0.028 (evol)

Phys. Rev. D75 (2007)012007

• $\Delta g/g$ has been extracted using two different methods • $\Delta g/g$ is likely small

• Method I:
$$\frac{\Delta g}{g}(x,\mu^2) = 0.078 \pm 0.034(\text{stat}) \pm 0.011(\text{sys} - \exp)^{+0.125}_{-0.082}(\text{sys} - \text{Models})$$

• Method II: $\frac{\Delta g}{g}(x,\mu^2) = 0.071 \pm 0.034(\text{stat}) \pm 0.010(\text{sys} - \exp)^{+0.127}_{-0.105}(\text{sys} - \text{Models})$

Additional slides

HERMES

Internal gas target: pol. : He, H, D unpol: H₂, D₂, He, N₂, Ne, Kr, Xe

Particle ID: TRD, Preshower, Calorimeter, Cerenkov (until 1997), RICH (since 1998)

Reconstruction: $\Delta p/p < 2\%$, $\Delta \Theta < I$ mrad

g1:Data Set and Binning

Target	Year	Luminosity (pb ⁻¹)	#	P _{Target} (%)	P _{Beam} (%)
Н	1996	12.6	670,000	75.9±3.2	~ [] +] 0
Н	1997	37.3	2,800,000	85.1±3.2	~JJT1.0
D	2000	138.7	10,900,000	85.1±3.2(+) 84.0±3.1(-)	~53±1.0

hermes

g1^{p,d}

EPS HEP 2007, Manchester, UK

Fit results (Method II)

- •Light shaded area: range of data
- Dark shaded area: center of gravity for fit

- Functions are polynomials with 1 or 2 free parameters
- •Fix $\Delta g/g \rightarrow x$ for $x \rightarrow 0$ and $\Delta g/g \rightarrow 1$ for $x \rightarrow 1$ (Brodsky et al.)
- • $|\Delta g(x)/g(x)| < 1$ for all x
- Difference between functions is systematic uncertainty