K_{l3} Form Factor with $N_f = 2 + 1$ Domain Wall Fermions

JAMES ZANOTTI UNIVERSITY OF EDINBURGH UKQCD/RBC COLLABORATIONS

ACKNOWLEDGEMENTS

UKQCD: D. Antonio, P. Boyle, A. Jüttner, C. Sachrajda, R. Tweedie

RBC: C. Dawson, T. Izubuchi, S. Sasaki, A. Soni

CKM MATRIX

Quark Mixing Matrix

Probability of a transition from one quark q to another quark q' $\propto |V_{qq'}|^2$

 $V_{CKM} \begin{vmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{vmatrix} = \begin{vmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{vmatrix}$

UNITARITY TRIANGLE

One common parameterisation (Wolfenstein):

UNITARITY TRIANGLE

CKM MATRIX Lattice Input

$K^+ \to \pi^0 l^+ \nu, \ f_\pi / f_K, \ \Xi^0 \to \Sigma^+ l^- \nu, \ \Sigma^- \to n \, l^- \nu$

 $|V_{ub}|$

 $|V_{us}|$

 $B \to \pi l \nu$

 $|V_{cd}|$

 $D \to K l \nu, \ D \to \pi l \nu$

 $|V_{cs}|$

 $D \to K l \nu, \ D \to \pi l \nu, \ f_{D_s}$

 $|V_{td}| \& |V_{ts}|$ $f_{B_d} \sqrt{\hat{B}_{B_d}}, \ \xi = (f_{B_s} \sqrt{B_{B_s}}) / (f_{B_d} \sqrt{B_{B_d}})$

CKM MATRIX

Lattice Input

 $\begin{array}{c|c}
|V_{us}| \\
K^+ \to \pi^0 l^+ \nu, f_\pi/f_K, \Xi^0 \to \Sigma^+ l^- \nu, \Sigma^- \to n \, l^- \nu \\
|V_{ub}|
\end{array}$

 $B \to \pi l \nu$

 $|V_{cd}|$

 $D \to K l \nu, \ D \to \pi l \nu$

 $|V_{cs}|$

 $D \to K l \nu, \ D \to \pi l \nu, \ f_{D_s}$

 $|V_{td}| \& |V_{ts}|$ $f_{B_d} \sqrt{\hat{B}_{B_d}}, \ \xi = (f_{B_s} \sqrt{B_{B_s}}) / (f_{B_d} \sqrt{B_{B_d}})$

MOTIVATION

• $K \to \pi l \nu (K_{l3})$ decay leads to determination of $|V_{us}|$

decay rate $\propto |V_{us}|^2 |f_+(q^2=0)|^2$

• Require precise theoretical determination $f_+(0)$

• Current conservation $\longrightarrow f_+(0) = 1\Big|_{su(3) flavour limit}$

Ademollo-Gatto Theorem -> second order SU(3) breaking effects in f₊(0)

$$f_{+}(0) = 1 + f_2 + f_4 + \cdots$$

 $\Rightarrow \Delta f = 1 + f_2 - f_{+}(0)$

• [Leutwyler & Roos: $f_2 = -0.023$]

MOTIVATION

$$\Delta f = 1 + f_2 - f_+(0)$$

-0.016(8) (Leutwyler & Roos, 1984) -0.017(5)(7) (Bećirević et al., quenched) $\Delta f = -0.017(5)(7) \text{ (Becirević et al., quenched)}$ $\Delta f = -0.009(9) \text{ (Dawson et al., } N_f = 2 \text{ DWF)}$ -0.025(4) (Tsutsui et al., $N_f = 2$ Clover) -0.0161(51) (Preliminary RBC/UKQCD)

Improve on earlier studies by:

- Using $N_f = 2 + 1$ flavours of dynamical fermions
- Probing light quark masses
- Checking finite size effects

LATTICE TECHNIQUES

 $K \rightarrow \pi$ matrix element

 $\langle \pi(p')|V_{\mu}|K(p)\rangle = (p_{\mu} + p'_{\mu})f_{+}(q^{2}) + (p_{\mu} - p'_{\mu})f_{-}(q^{2}), \quad q^{2} = (p' - p)^{2}$

Three-point function

EXTRACTION OF FORM FACTOR [hep-ph/0403217,0607162]

Extract scalar form factor

R

$$f_0(q^2) = f_+(q^2) + \frac{q^2}{m_K^2 - m_\pi^2} f_-(q^2)$$

at $q_{\text{max}}^2 = (m_K - m_\pi)^2$ with high precision via

$$\begin{aligned} t',t) &= \frac{C_4^{K\pi}(t',t;\vec{0},\vec{0})C_4^{\pi K}(t',t;\vec{0},\vec{0})}{C_4^{KK}(t',t;\vec{0},\vec{0})C_4^{\pi \pi}(t',t;\vec{0},\vec{0})} \\ &\longrightarrow \frac{(m_K+m_\pi)^2}{4m_K m_\pi} |f_0(q_{\max}^2)|^2 \end{aligned}$$

Construct second ratio

$$\tilde{R}(t',t;\vec{p}',\vec{p}) = \frac{C_4^{K\pi}(t',t;\vec{p}',\vec{p})C^K(t;\vec{0})C^{\pi}(t'-t;\vec{0})}{C_4^{K\pi}(t',t;\vec{0},\vec{0})C^K(t;\vec{p})C^{\pi}(t'-t;\vec{p}')} \\
\longrightarrow \frac{(E_K(\vec{p}) + E_{\pi}(\vec{p}'))^2}{m_K + m_{\pi}}F(p',p)$$

where

$$F(p',p) = \frac{f_+(q^2)}{f_0(q_{\max}^2)} \left(1 + \frac{E_K(\vec{p}) - E_\pi(\vec{p'})}{E_K(\vec{p}) + E_\pi(\vec{p'})} \xi(q^2) \right) , \ \xi(q^2) = \frac{f_-(q^2)}{f_+(q^2)}$$

Construct third ratio

$$R_k(t',t;\vec{p}',\vec{p}) = \frac{C_k^{K\pi}(t',t;\vec{p}',\vec{p})C_4^{KK}(t',t;\vec{p}',\vec{p})}{C_4^{K\pi}(t',t;\vec{p}',\vec{p})C_k^{KK}(t',t;\vec{p}',\vec{p})} \quad (k = 1, 2, 3)$$

to obtain

 $\xi(q^2) = \frac{-(E_K(\vec{p}) + E_K(\vec{p'}))(p + p')_k + (E_K(\vec{p}) + E_\pi(\vec{p'}))(p + p')_k R_k}{(E_K(\vec{p}) + E_K(\vec{p'}))(p - p')_k - (E_K(\vec{p}) - E_\pi(\vec{p'}))(p + p')_k R_k}$

PARAMETERS

 $N_f = 2 + 1$ flavours of dynamical domain wall fermions

Iwasaki gauge action

 $\beta = 2.13, L_s = 16, am_{res} \approx 0.003, a \approx 0.121 \, \text{fm}, am_s = 0.04$

am_q	Volume	$m_{\pi} [{ m MeV}]$	$m_K \; [{ m MeV}]$
0.03 0.02	$16^3 \times 32$	0.632(1) 0.522(2) 0.601(2)	0.677(1) 0.624(2) 0.575(1)
0.01 0.03 0.02 0.01	$24^3 imes 64$	0.401(2) $0.628(1)$ $0.521(1)$ $0.390(1)$ $0.708(1)$	0.575(1) $0.673(1)$ $0.621(1)$ $0.566(1)$ $0.570(1)$

For more details, see hep-lat/0701013

 $f_0(q_{\rm max}^2), \ am_s = 0.04$

$$R(t',t) = \frac{C_4^{K\pi}(t',t;\vec{0},\vec{0})C_4^{\pi K}(t',t;\vec{0},\vec{0})}{C_4^{KK}(t',t;\vec{0},\vec{0})C_4^{\pi \pi}(t',t;\vec{0},\vec{0})}$$

 $16^3 \times 32$

 $24^3 \times 64$

0.03 0.02 0.01

24

28

20

32

 $F(p, p'), am_q = 0.02, |\vec{q}|^2 = 1:$ $\tilde{R}(t',t;\vec{p}',\vec{p}) = \frac{C_4^{K\pi}(t',t;\vec{p}',\vec{p})C^K(t;\vec{0})C^{\pi}(t'-t;\vec{0})}{C_4^{K\pi}(t',t;\vec{0},\vec{0})C^K(t;\vec{p})C^{\pi}(t'-t;\vec{p}')}$

 $16^3 \times 32$

 $24^3 \times 64$

 $\xi(q^2), \ am_q = 0.03, \ |\vec{q}|^2 = 2:$

 $R_k(t',t;\vec{p}',\vec{p}) = \frac{C_k^{K\pi}(t',t;\vec{p}',\vec{p})C_4^{KK}(t',t;\vec{p}',\vec{p})}{C_4^{K\pi}(t',t;\vec{p}',\vec{p})C_k^{KK}(t',t;\vec{p}',\vec{p})} \quad (k = 1, 2, 3)$

 $16^{3} \times 32$

 $24^3 \times 64$

FITTING FORM FACTORS

Construct scalar form factor:

$$f_0(q^2) = f_+(q^2) \left[1 + \frac{q^2}{m_K^2 - m_\pi^2} \xi(q^2) \right]$$

* Fit with a monopole ansatz:

$$f_0(q^2) = \frac{f_0(0)}{1 - q^2/M^2}$$

$$f_0(q^2)$$

 $am_s = 0.04, \ am_{ud} = 0.03, \ V = 16^3 \times 32 \ \& \ 24^3 \times 64, \ L_s = 16$

with $f_0(q_{\text{max}}^2): f_0(0) = 0.99911(6)$

 $f_0(q_{\max}^2): f_0(0) = 1.0198(301)$

without

POLE: $f_0(q^2) = f_0(0)/(1 - q^2/M^2)$

CHIRAL EXTRAPOLATION OF $f_+(0)$

$$f_{+}(0) = 1 + f_{2} + \Delta f$$
$$f_{2} = \frac{3}{2}H_{\pi K} + \frac{3}{2}H_{\eta K}$$

where

$$H_{PQ} = -\frac{1}{64\pi^2 f_\pi^2} \left[M_P^2 + M_Q^2 + \frac{2M_P^2 M_Q^2}{M_P^2 - M_Q^2} \log\left(\frac{M_Q^2}{M_P^2}\right) \right]$$

at the physical masses, $f_2 = -0.023$

 $\Delta f \propto (m_s - m_{ud})^2$ \longrightarrow Attempt two different extrapolations $\Delta f = a + B(m_s - m_{ud})^2$

$$R_{\Delta f} = \frac{\Delta f}{(M_K^2 - M_\pi^2)^2} = a + b(M_K^2 + M_\pi^2)$$

CHIRAL EXTRAPOLATION OF $f_+(0)$

CHIRAL EXTRAPOLATION OF $f_+(0)$

ALTERNATIVE FITS TO $f_0(q^2)$

1. linear:

$$f_0(q^2) = f_0(0) + a_1 q^2$$

2. quadratic:

$$f_0(q^2) = f_0(0) + a_1 q^2 + a_2 q^4$$

3. z-fit [hep-ph/0607108]:

 $f_0(t) = \frac{1}{\phi(t, t_0, Q^2)} \sum_{k=0}^{\infty} a_k(t_0, Q^2) z(t, t_0)^k$ $t_{\pm} \equiv (m_K \pm m_{\pi})^2$ $t = q^2 \rightarrow z(t, t_0) \equiv \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}} \qquad t_0 \in (-\infty, t_+)$ $t_0 = t_+ (1 - \sqrt{1 - t_- / t_+})$

$$\phi(t,t_0,Q^2) = \sqrt{\frac{3t_+t_-}{32\pi}} \frac{z(t,0)}{-t} \frac{z(t,-Q^2)}{-Q^2-t} \left(\frac{z(t,t_0)}{t_0-t}\right)^{-1/2} \left(\frac{z(t,t_-)}{t_--t}\right)^{-1/4} \frac{\sqrt{t_+-t}}{(t_+-t_0)^{1/4}}$$

1. LINEAR: $f_0(q^2) = f_0(0) + a_1q^2$

2. QUADRATIC: $f_0(q^2) = f_0(0) + a_1q^2 + a_2q^4$

3. Z FIT: $f_0(t) = \frac{1}{\phi(t,t_0,Q^2)} \sum_{k=0}^{\infty} a_k(t_0,Q^2) z(t,t_0)^k$

4. POLE: $f_0(q^2) = f_0(0)/(1-q^2/M^2)$

COMPARISON

|*V*us| CKM(2006), KAON(2007)

 $\Delta f = -0.0161(46)(15)(16) \Rightarrow f_{+}^{K\pi}(0) = 0.9609(51)$ Using $|V_{us}f_{+}(0)| = 0.2169(9)$ from experimental decay rate: $|V_{us}| = 0.2257(9)_{\exp}(12)_{f_{+}(0)}$

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - \delta, \quad \delta = 0.00076(62)$$

PDG(2006)/LR:

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - \delta, \quad \delta = 0.0008(10)$

New Developments

LIGHT QUARK MASSES

LIGHT QUARK MASSES

Global fit to K₁₃ data

Usually we proceed by first fitting the form factor with a (eg. pole) ansatz at each simulated quark mass $f_0(q^2) = \frac{f_0(0)}{1-q^2/M^2}$

Then extrapolate the results to the physical masses $f_+(0) = 1 + f_2 + \Delta f$

$$R_{\Delta f} = \frac{\Delta f}{(M_K^2 - M_\pi^2)^2} = a + b(M_K^2 + M_\pi^2)$$

In an attempt to get as much information out of the lattice data as possible, we attempt to fit the q² and quark mass dependencies simultaneously

$$\frac{1+f_2+(m_K^2-m_\pi^2)^2(A_1+A_2(m_K^2+m_\pi^2))}{1-\frac{q^2}{M_0+M_1(m_K^2+m_\pi^2)}}$$

where A₀, A₁, M₀ and M₁ are fit parameters and $f_2 = \frac{3}{2}H_{\pi K} + \frac{3}{2}H_{\eta K}$

$$H_{PQ} = -\frac{1}{64\pi^2 f_\pi^2} \left[M_P^2 + M_Q^2 + \frac{2M_P^2 M_Q^2}{M_P^2 - M_Q^2} \log\left(\frac{M_Q^2}{M_P^2}\right) \right]$$

The q² dependence

The data points are the lattice results from all 4 masses

Dotted lines are constructed using the fitted parameters inserted into the previous ansatz and evaluated at each of the 4 quark masses

Solid line: as above but for the physical meson masses

The quark mass dependence

The quark mass dependence

SUMMARY AND FUTURE WORK Preliminary $N_f = 2 + 1$ result for agrees well with L/R result

no obvious finite size effects

small statistical error

progress towards controlling systematics
 Further Improvements
 Lighter quark masses (am_q = 0.005)

Another $\beta \rightarrow$ continuum limit

Twisted boundary conditions \rightarrow smaller q^2

TWISTED BOUNDARY CONDITIONS hep-lat/0703005

* On a periodic lattice with spatial volume L^3 , momenta are discretised in units of $2\pi/L$

* Modify boundary conditions on the valence quarks $\psi(x_k + L) = e^{i\theta_k}\psi(x_k), \quad (k = 1, 2, 3)$

** allows to tune the momenta continuously $\vec{p}_{\rm FT} + \vec{\theta}/L$ ** to obtain $q^2 = 0$

 $q^{2} = (p_{f} - p_{i})^{2} = \left\{ [E_{f}(\vec{p}_{f}) - E_{i}(\vec{p}_{i})]^{2} - \left[(\vec{p}_{\text{FT},f} + \vec{\theta}_{f}/L) - (\vec{p}_{\text{FT},i} + \vec{\theta}_{i}/L) \right]^{2} \right\}$

TWISTED BOUNDARY CONDITIONS

