Adding Flavour to Twistor Strings
 Work with C. Papageorgakis and K. Zoubos To appear: arXiv:0707.XXXX

James Bedford
Queen Mary, University of London
\&
CERN

21 July 2007
HEP Europhysics Conference, Manchester

Twistor String Theory

- Proposed correspondence between weakly coupled $\mathcal{N}=4$ SYM and the open-string topological B-model on (super)-twistor space ($\mathbb{C P}^{3 \mid 4}$) [Witten '03].
- Explains simplicity of Park-Taylor formula for n-gluon MHV amplitudes:

where $p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}$ and $\langle k l\rangle=\epsilon^{\alpha \beta} \lambda_{\alpha}^{k} \lambda_{\beta}^{l}$
- Tree-level scattering amplitudes obtained by integrating over the moduli space of instantons of degree d holomorphically embedded in twistor space.

Twistor String Theory

- Proposed correspondence between weakly coupled $\mathcal{N}=4$ SYM and the open-string topological B-model on (super)-twistor space ($\mathbb{C P}^{3 \mid 4}$) [Witten '03].
- Explains simplicity of Park-Taylor formula for n-gluon MHV amplitudes:

$$
A_{n}=\frac{\langle i j\rangle}{\langle 12\rangle \ldots\langle n 1\rangle}
$$

where $p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}$ and $\langle k l\rangle=\epsilon^{\alpha \beta} \lambda_{\alpha}^{k} \lambda_{\beta}^{l}$

- Tree-level scattering amplitudes obtained by integrating over the moduli space of instantons of degree d holomorphically embedded in twistor space.

Twistor String Theory

- Proposed correspondence between weakly coupled $\mathcal{N}=4$ SYM and the open-string topological B-model on (super)-twistor space ($\mathbb{C P}^{3 \mid 4}$) [Witten '03].
- Explains simplicity of Park-Taylor formula for n-gluon MHV amplitudes:

$$
A_{n}=\frac{\langle i j\rangle}{\langle 12\rangle \ldots\langle n 1\rangle}
$$

where $p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}$ and $\langle k l\rangle=\epsilon^{\alpha \beta} \lambda_{\alpha}^{k} \lambda_{\beta}^{l}$

- Tree-level scattering amplitudes obtained by integrating over the moduli space of instantons of degree d holomorphically embedded in twistor space.

Successes and Failures

- However, conformal supergravity spoils the picture at one-loop [Berkovits, Witten '04].
- But, the duality has inspired great progress in (non)-supersymmetric field theory, e.g.
- What is the quantum completion of the twistor string? Some (non-topological?) B-model extension with modified target space?

Successes and Failures

- However, conformal supergravity spoils the picture at one-loop [Berkovits, Witten '04].
- But, the duality has inspired great progress in (non)-supersymmetric field theory, e.g.

- What is the quantum completion of the twistor string? Some (non-tonological?) B-model extension with modified target space?

Successes and Failures

- However, conformal supergravity spoils the picture at one-loop [Berkovits, Witten '04].
- But, the duality has inspired great progress in (non)-supersymmetric field theory, e.g.
- CSW rules for gauge theory using MHV amplitudes as vertices [Cachazo, Svrček, Witten '04]
- Extension of CSW to one-loop in $\mathcal{N}=4$ super-Yang-Mills [Brandhuber, Spence, Travaglini '04]
- Also to $\mathcal{N}=2,1$ and non-SUSY gauge theory [J.B., Brandhuber, Spence, Travaglini; Quigley, Rozali '04; Badger, Glover, Risager '07].
- What is the quantum completion of the twistor string? Some (non-topological?) B-model extension with modified target space?

Successes and Failures

- However, conformal supergravity spoils the picture at one-loop [Berkovits, Witten '04].
- But, the duality has inspired great progress in (non)-supersymmetric field theory, e.g.
- CSW rules for gauge theory using MHV amplitudes as vertices [Cachazo, Svrček, Witten '04]
- Extension of CSW to one-loop in $\mathcal{N}=4$ super-Yang-Mills [Brandhuber, Spence, Travaglini '04]
- Also to $\mathcal{N}=2,1$ and non-SUSY gauge theory [J.B., Brandhuber, Spence, Travaglini; Quigley, Rozali '04 Badger, Glover, Risager '07]
- What is the quantum completion of the twistor string? Some (non-topological?) B-model extension with modified target space?

Successes and Failures

- However, conformal supergravity spoils the picture at one-loop [Berkovits, Witten '04].
- But, the duality has inspired great progress in (non)-supersymmetric field theory, e.g.
- CSW rules for gauge theory using MHV amplitudes as vertices [Cachazo, Svrček, Witten '04]
- Extension of CSW to one-loop in $\mathcal{N}=4$ super-Yang-Mills [Brandhuber, Spence, Travaglini '04]
- Also to $\mathcal{N}=2,1$ and non-SUSY gauge theory [J.B., Brandhuber, Spence, Travaglini; Quigley, Rozali '04; Badger, Glover, Risager '07].
- What is the quantum completion of the twistor string? Some (non-topological?) B-model extension with modified target space?

Successes and Failures

- However, conformal supergravity spoils the picture at one-loop [Berkovits, Witten '04].
- But, the duality has inspired great progress in (non)-supersymmetric field theory, e.g.
- CSW rules for gauge theory using MHV amplitudes as vertices [Cachazo, Svrček, Witten '04]
- Extension of CSW to one-loop in $\mathcal{N}=4$ super-Yang-Mills [Brandhuber, Spence, Travaglini '04]
- Also to $\mathcal{N}=2,1$ and non-SUSY gauge theory [J.B., Brandhuber, Spence, Travaglini; Quigley, Rozali '04; Badger, Glover, Risager '07].
- What is the quantum completion of the twistor string? Some (non-topological?) B-model extension with modified target space?

Possibilities

- One way to proceed: map out theories which do have a tree-level twistor dual. The most obvious candidates are those which preserve conformal invariance order-by-order in perturbation theory - UV finite theories.
- Marginal deformations of $\mathcal{N}=4$ [Kulaxizi, Zoubos '04]
- Orbifolds giving $\mathcal{N}=1,2$ quiver gauge theories |Park, Rey; Giombi, Kulaxizi, Ricci, Robles-Llane. Trancanelli, Zoubos '04].
- Here: $\mathcal{N}=2$ SYM with fundamental multiplets.

Possibilities

- One way to proceed: map out theories which do have a tree-level twistor dual. The most obvious candidates are those which preserve conformal invariance order-by-order in perturbation theory - UV finite theories.
- Marginal deformations of $\mathcal{N}=4$ [Kulaxizi, Zoubos '04].
- Orbifolds giving $\mathcal{N}=1,2$ quiver gauge theories |Park, Rey; Giombi, Kulaxizi, Ricci, Robles-Llana, Trancanelli, Zoubos '04]
- Here: $\mathcal{N}=2$ SYM with fundamental multiplets.

Possibilities

- One way to proceed: map out theories which do have a tree-level twistor dual. The most obvious candidates are those which preserve conformal invariance order-by-order in perturbation theory - UV finite theories.
- Marginal deformations of $\mathcal{N}=4$ [Kulaxizi, Zoubos '04].
- Orbifolds giving $\mathcal{N}=1,2$ quiver gauge theories [Park, Rey; Giombi, Kulaxizi, Ricci, Robles-Llana, Trancanelli, Zoubos '04].
- Here: $\mathcal{N}=2$ SYM with fundamental multiplets.

Possibilities

- One way to proceed: map out theories which do have a tree-level twistor dual. The most obvious candidates are those which preserve conformal invariance order-by-order in perturbation theory - UV finite theories.
- Marginal deformations of $\mathcal{N}=4$ [Kulaxizi, Zoubos '04].
- Orbifolds giving $\mathcal{N}=1,2$ quiver gauge theories [Park, Rey; Giombi, Kulaxizi, Ricci, Robles-Llana, Trancanelli, Zoubos '04].
- Here: $\mathcal{N}=2$ SYM with fundamental multiplets.

Outline

(1) Review of duality for $\mathcal{N}=4$ SYM
(2) Orientifolding: $\mathcal{N}=2$ SYM with 4 flavours

(1) Conclusions

Outline

(1) Review of duality for $\mathcal{N}=4$ SYM
(2) Orientifolding: $\mathcal{N}=2$ SYM with 4 flavours
(3) Orbifolding: $\mathcal{N}=2$ SYM with $2 N_{c}$ flavours

- Conclusions

Outline

(1) Review of duality for $\mathcal{N}=4$ SYM
(2) Orientifolding: $\mathcal{N}=2$ SYM with 4 flavours
(3) Orbifolding: $\mathcal{N}=2$ SYM with $2 N_{c}$ flavours
(4) Conclusions

Outline

(1) Review of duality for $\mathcal{N}=4$ SYM
(2) Orientifolding: $\mathcal{N}=2$ SYM with 4 flavours
(3) Orbifolding: $\mathcal{N}=2$ SYM with $2 N_{c}$ flavours
(9) Conclusions

Penrose Transform

- Decomposition of a light-like momentum $p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}$ plus non-linearity of conformal group suggests Penrose xfm:

$$
\tilde{\lambda}_{\dot{\alpha}} \rightarrow i \frac{\partial}{\partial \mu^{\dot{\alpha}}} \quad ; \quad \mu_{\dot{\alpha}} \rightarrow-i \frac{\partial}{\partial \tilde{\lambda} \dot{\alpha}}
$$

whereupon $Z^{I}=\left(\lambda^{\alpha}, \mu^{\dot{\alpha}}\right)$ span a copy of $\mathbb{C} P^{3}$.

- Adding helicity gives fermionic directions ψ^{I} and then $\left(Z^{I}, \psi^{I}\right) \sim c\left(Z^{I}, \psi^{I}\right)$ describe the super-Calabi-Yau $\mathbb{C} P^{3 \mid 4}$ which can be considered as a good target space for the B-model. [Witten '04]

Penrose Transform

- Decomposition of a light-like momentum $p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}$ plus non-linearity of conformal group suggests Penrose xfm:

$$
\tilde{\lambda}_{\dot{\alpha}} \rightarrow i \frac{\partial}{\partial \mu^{\dot{\alpha}}} \quad ; \quad \mu_{\dot{\alpha}} \rightarrow-i \frac{\partial}{\partial \tilde{\lambda}^{\dot{\alpha}}}
$$

whereupon $Z^{I}=\left(\lambda^{\alpha}, \mu^{\dot{\alpha}}\right)$ span a copy of $\mathbb{C} P^{3}$.

- Adding helicity gives fermionic directions ψ^{I} and then $\left(Z^{I}, \psi^{I}\right) \sim c\left(Z^{I}, \psi^{I}\right)$ describe the super-Calabi-Yau $\mathbb{C} P^{3 \mid 4}$, which can be considered as a good target space for the B-model.
[Witten '04]

Holomorphic Chern Simons

- The topological B-model with "D5"-branes wrapping $\left(Z^{I}, \psi^{I}\right)$ and with $\bar{\psi}=0$ descends to holomorphic Chern-Simons theory:

$$
S=\frac{1}{2} \int_{\mathrm{B} 6} \boldsymbol{\Omega} \wedge \operatorname{Tr}\left(\mathcal{A} \cdot \bar{\partial} \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
$$

with $\boldsymbol{\Omega} \sim Z d^{3} Z d^{4} \psi$ the holomorphic volume form.

- $\mathcal{A}_{\bar{I}}(Z, \bar{Z}, \psi) d \bar{Z}^{\bar{I}}$ is the superfield
- This has the field content of $\mathcal{N}=4$ super-Yang-Mills, but only a subset of the interactions.

Holomorphic Chern Simons

- The topological B-model with "D5"-branes wrapping (Z^{I}, ψ^{I}) and with $\bar{\psi}=0$ descends to holomorphic Chern-Simons theory:

$$
S=\frac{1}{2} \int_{\mathrm{B} 6} \boldsymbol{\Omega} \wedge \operatorname{Tr}\left(\mathcal{A} \cdot \bar{\partial} \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
$$

with $\boldsymbol{\Omega} \sim Z d^{3} Z d^{4} \psi$ the holomorphic volume form.

- $\mathcal{A}_{\bar{I}}(Z, \bar{Z}, \psi) d \bar{Z}^{\bar{I}}$ is the superfield

$$
\mathcal{A}=A+\psi^{I} \lambda_{I}+\frac{1}{2!} \psi^{I} \psi^{J} \phi_{I J}+\frac{1}{3!} \epsilon_{I J K L} \psi^{I} \psi^{J} \psi^{K} \tilde{\lambda}^{L}+\psi^{1} \psi^{2} \psi^{3} \psi^{4} G
$$

- This has the field content of $\mathcal{N}=4$ super-Yang-Mills, but only a subset of the interactions.

Holomorphic Chern Simons

- The topological B-model with "D5"-branes wrapping $\left(Z^{I}, \psi^{I}\right)$ and with $\bar{\psi}=0$ descends to holomorphic Chern-Simons theory:

$$
S=\frac{1}{2} \int_{\mathrm{B} 6} \boldsymbol{\Omega} \wedge \operatorname{Tr}\left(\mathcal{A} \cdot \bar{\partial} \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
$$

with $\boldsymbol{\Omega} \sim Z d^{3} Z d^{4} \psi$ the holomorphic volume form.

- $\mathcal{A}_{\bar{I}}(Z, \bar{Z}, \psi) d \bar{Z}^{\bar{I}}$ is the superfield

$$
\mathcal{A}=A+\psi^{I} \lambda_{I}+\frac{1}{2!} \psi^{I} \psi^{J} \phi_{I J}+\frac{1}{3!} \epsilon_{I J K L} \psi^{I} \psi^{J} \psi^{K} \tilde{\lambda}^{L}+\psi^{1} \psi^{2} \psi^{3} \psi^{4} G
$$

- This has the field content of $\mathcal{N}=4$ super-Yang-Mills, but only a subset of the interactions.

D1-Instantons

- Witten's solution was to add "D1"-instantons wrapping degree d holomorphic curves on which the gauge theory amplitudes localise.
- In the case of the MHV amplitudes these are copies of $\mathbb{C P}^{1} \subset \mathbb{C P}^{3 \mid 4}$ embedded via the relations

$$
\mu_{\dot{\alpha}}+x_{\alpha \dot{\alpha}} \lambda^{\alpha}=0 \quad ; \quad \psi^{A}+\theta_{\alpha}^{A} \lambda^{\alpha}=0
$$

- $x_{\alpha \dot{\alpha}}=\sigma_{\alpha \dot{\alpha}}^{\mu} x_{\mu}$ are just co-ordinates of Minkowski space!

D1-Instantons

- Witten's solution was to add "D1"-instantons wrapping degree d holomorphic curves on which the gauge theory amplitudes localise.
- In the case of the MHV amplitudes these are copies of $\mathbb{C P}{ }^{1} \subset \mathbb{C} P^{3 \mid 4}$ embedded via the relations

$$
\mu_{\dot{\alpha}}+x_{\alpha \dot{\alpha}} \lambda^{\alpha}=0 \quad ; \quad \psi^{A}+\theta_{\alpha}^{A} \lambda^{\alpha}=0
$$

- $x_{\alpha \dot{\alpha}}=\sigma_{\alpha \dot{\alpha}}^{\mu} x_{\mu}$ are just co-ordinates of Minkowski space!

D1-Instantons

- Witten's solution was to add "D1"-instantons wrapping degree d holomorphic curves on which the gauge theory amplitudes localise.
- In the case of the MHV amplitudes these are copies of $\mathbb{C P}{ }^{1} \subset \mathbb{C} P^{3 \mid 4}$ embedded via the relations

$$
\mu_{\dot{\alpha}}+x_{\alpha \dot{\alpha}} \lambda^{\alpha}=0 \quad ; \quad \psi^{A}+\theta_{\alpha}^{A} \lambda^{\alpha}=0
$$

- $x_{\alpha \dot{\alpha}}=\sigma_{\alpha \dot{\alpha}}^{\mu} x_{\mu}$ are just co-ordinates of Minkowski space!

Amplitudes

- Scattering amplitudes are computed by evaluating the correlator

$$
A_{(n)}=\int d^{4} x d^{8} \theta\left\langle\int_{\mathrm{D} 1} J_{1} w_{1} \cdots \int_{\mathrm{D} 1} J_{n} w_{n}\right\rangle
$$

where the J_{i} are currents on the D1s and the w_{i} are wavefunctions of external particles.

- This correctly reproduces the MHV amplitudes [Witten '04] and many other cases as well [Roiban, Spradlin, Volovich '04]

Amplitudes

- Scattering amplitudes are computed by evaluating the correlator

$$
A_{(n)}=\int d^{4} x d^{8} \theta\left\langle\int_{\mathrm{D} 1} J_{1} w_{1} \cdots \int_{\mathrm{D} 1} J_{n} w_{n}\right\rangle
$$

where the J_{i} are currents on the D1s and the w_{i} are wavefunctions of external particles.

- This correctly reproduces the MHV amplitudes [Witten '04] and many other cases as well [Roiban, Spradlin, Volovich '04]

$\mathcal{N}=2 \operatorname{Sp}(N)$ Field Content and Action

- We wish to obtain a certain $\mathcal{N}=2$ SCFT with:
(9) one vector multiplet (V, Φ) in the adjoint of $\operatorname{Sp}(N)$
(2) one hypermultiplet $\left(Z, Z^{\dagger \dagger}\right)$ in the antisymmetric
(3) 4 fundamental hypermultiplets $\left(Q^{I}, Q^{\prime \dagger I}\right)$.
- This field content is just right to make the theory quantum-mechanically conformally-invariant.
- The action can be obtained from the following superspace formulation in terms of $\mathcal{N}=1$ superfields

$+\sqrt{2}\left(\int d^{2} \theta\left(Q^{\prime I} \Phi Q_{I}+\operatorname{Tr}\left(Z^{\prime}[\Phi, Z]\right)\right)+\right.$ h.c. $)$

$\mathcal{N}=2 \operatorname{Sp}(N)$ Field Content and Action

- We wish to obtain a certain $\mathcal{N}=2$ SCFT with:
(1) one vector multiplet (V, Φ) in the adjoint of $\operatorname{Sp}(N)$
© 4 fundamental hypermultiplets $\left(Q^{I}, Q^{\prime} \dagger I\right)$
- This field content is just right to make the theory quantum-mechanically conformally-invariant.
- The action can be obtained from the following superspace formulation in terms of $\mathcal{N}=1$ superfields

$+\sqrt{2}\left(\int d^{2} \theta\left(Q^{\prime I} \Phi Q_{I}+\operatorname{Tr}\left(Z^{\prime}[\Phi, Z]\right)\right)+\right.$ h.c. $)$

$\mathcal{N}=2 \operatorname{Sp}(N)$ Field Content and Action

- We wish to obtain a certain $\mathcal{N}=2$ SCFT with:
(1) one vector multiplet (V, Φ) in the adjoint of $\operatorname{Sp}(N)$
(2) one hypermultiplet $\left(Z, Z^{\prime \dagger}\right)$ in the antisymmetric © 4 fundamental hypermultiplets $\left(Q^{1}\right.$
- This field content is just right to make the theory quantum-mechanically conformally-invariant.
- The action can be obtained from the following superspace formulation in terms of $\mathcal{N}=1$ superfields

$+\sqrt{2}\left(\int d^{2} \theta\left(Q^{\prime I} \Phi Q_{I}+\operatorname{Tr}\left(Z^{\prime}[\Phi, Z]\right)\right)+\right.$ h.c. $)$

$\mathcal{N}=2 \operatorname{Sp}(N)$ Field Content and Action

- We wish to obtain a certain $\mathcal{N}=2$ SCFT with:
(1) one vector multiplet (V, Φ) in the adjoint of $\operatorname{Sp}(N)$
(2) one hypermultiplet $\left(Z, Z^{\prime \dagger}\right)$ in the antisymmetric
(3) 4 fundamental hypermultiplets $\left(Q^{I}, Q^{\prime \dagger I}\right)$.
- This field content is just right to make the theory quantum-mechanically conformally-invariant.
- The action can be obtained from the following superspace formulation in terms of $\mathcal{N}=1$ superfields

$+\sqrt{2}\left(\int d^{2} \theta\left(Q^{\prime I} \Phi Q_{I}+\operatorname{Tr}\left(Z^{\prime}[\Phi, Z]\right)\right)+\right.$ h.c. $)$

$\mathcal{N}=2 \operatorname{Sp}(N)$ Field Content and Action

- We wish to obtain a certain $\mathcal{N}=2$ SCFT with:
(1) one vector multiplet (V, Φ) in the adjoint of $\operatorname{Sp}(N)$
(2) one hypermultiplet $\left(Z, Z^{\prime \dagger}\right)$ in the antisymmetric
(3) 4 fundamental hypermultiplets $\left(Q^{I}, Q^{\prime \dagger I}\right)$.
- This field content is just right to make the theory quantum-mechanically conformally-invariant.
- The action can be obtained from the following superspace formulation in terms of $\mathcal{N}=1$ superfields

$+\int d^{2} \theta d^{2} \bar{\theta} Q^{\prime I} e^{2 V} Q_{I}^{\prime \dagger}+\operatorname{Tr}\left(\int d^{2} \theta d^{2} \bar{\theta} e^{2 V} Z^{\dagger} e^{-2 V} Z+\int d^{2} \theta d^{2} \bar{\theta} e^{-2 V} Z^{\prime} e^{2 V} Z^{\prime \dagger}\right)$
$+\sqrt{2}\left(\int d^{2} \theta\left(O^{\prime I} \Phi Q_{T}+\operatorname{Tr}\left(Z^{\prime} \mid \Phi Z 1\right)\right)+h c\right)$

$\mathcal{N}=2 \operatorname{Sp}(N)$ Field Content and Action

- We wish to obtain a certain $\mathcal{N}=2$ SCFT with:
(1) one vector multiplet (V, Φ) in the adjoint of $\operatorname{Sp}(N)$
(2) one hypermultiplet $\left(Z, Z^{\prime \dagger}\right)$ in the antisymmetric
(3) 4 fundamental hypermultiplets $\left(Q^{I}, Q^{\prime \dagger I}\right)$.
- This field content is just right to make the theory quantum-mechanically conformally-invariant.
- The action can be obtained from the following superspace formulation in terms of $\mathcal{N}=1$ superfields

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{8 \pi} \operatorname{Im} \operatorname{Tr}\left[\tau\left(\int d^{2} \theta W^{\alpha} W_{\alpha}+2 \int d^{2} \theta d^{2} \bar{\theta} e^{2 V} \Phi^{\dagger} e^{-2 V} \Phi\right)\right]+\int d^{2} \theta d^{2} \bar{\theta} Q^{\dagger I} e^{-2 V} Q_{I} \\
& +\int d^{2} \theta d^{2} \bar{\theta} Q^{\prime I} e^{2 V}{Q_{I}^{\prime \dagger}+\operatorname{Tr}\left(\int d^{2} \theta d^{2} \bar{\theta} e^{2 V} Z^{\dagger} e^{-2 V} Z+\int d^{2} \theta d^{2} \bar{\theta} e^{-2 V} Z^{\prime} e^{2 V} Z^{\prime \dagger}\right)}+ \\
& +\sqrt{2}\left(\int d^{2} \theta\left(Q^{\prime I} \Phi Q_{I}+\operatorname{Tr}\left(Z^{\prime}[\Phi, Z]\right)\right)+\text { h.c. }\right) .
\end{aligned}
$$

IIB/F-theory Picture

- There is a stringy description for this gauge theory in terms of F-theory on $K 3 \sim T^{4} / \mathbb{Z}_{2}$. [Sen; Banks, Douglas, Seiberg; Douglas, Lowe, Schwartz '96]
- Reduces to orientifold of type IIB with
- Preserves $1 / 2$ SUSY $\longrightarrow \mathcal{N}=2$ in $d=4$.

IIB/F-theory Picture

- There is a stringy description for this gauge theory in terms of F-theory on $K 3 \sim T^{4} / \mathbb{Z}_{2}$. [Sen; Banks, Douglas, Seiberg; Douglas, Lowe, Schwartz '96]
- Reduces to orientifold of type IIB with
- Preserves $1 / 2$ SUSY $\longrightarrow \mathcal{N}=2$ in $d=4$.

IIB/F-theory Picture

- There is a stringy description for this gauge theory in terms of F-theory on $K 3 \sim T^{4} / \mathbb{Z}_{2}$. [Sen; Banks, Douglas, Seiberg; Douglas, Lowe, Schwartz '96]
- Reduces to orientifold of type IIB with
- An O7-plane in $x^{1} \ldots x^{7}$
- Preserves $1 / 2$ SUSY $\longrightarrow \mathcal{N}=2$ in $d=4$.

IIB/F-theory Picture

- There is a stringy description for this gauge theory in terms of F-theory on $K 3 \sim T^{4} / \mathbb{Z}_{2}$. [Sen; Banks, Douglas, Seiberg; Douglas, Lowe, Schwartz '96]
- Reduces to orientifold of type IIB with
- An O7-plane in $x^{1} \ldots x^{7}$
- 4 D7-branes in $x^{1} \ldots x^{7}$
- Preserves $1 / 2$ SUSY $\longrightarrow \mathcal{N}=2$ in $d=4$.

IIB/F-theory Picture

- There is a stringy description for this gauge theory in terms of F-theory on $K 3 \sim T^{4} / \mathbb{Z}_{2}$. [Sen; Banks, Douglas, Seiberg; Douglas, Lowe, Schwartz '96]
- Reduces to orientifold of type IIB with
- An O7-plane in $x^{1} \ldots x^{7}$
- 4 D7-branes in $x^{1} \ldots x^{7}$
- N D3-branes in $x^{1} \ldots x^{3}$
- Preserves $1 / 2$ SUSY $\longrightarrow \mathcal{N}=2$ in $d=4$.

IIB/F-theory Picture

- There is a stringy description for this gauge theory in terms of F-theory on $K 3 \sim T^{4} / \mathbb{Z}_{2}$. [Sen; Banks, Douglas, Seiberg; Douglas, Lowe, Schwartz '96]
- Reduces to orientifold of type IIB with
- An O7-plane in $x^{1} \ldots x^{7}$
- 4 D7-branes in $x^{1} \ldots x^{7}$
- N D3-branes in $x^{1} \ldots x^{3}$
- Preserves $1 / 2$ SUSY $\longrightarrow \mathcal{N}=2$ in $d=4$.

Symmetries

In this picture one can quickly see that the symmetries of the theory are:

Component	$\mathrm{SO}(1,3)$	$\mathrm{SU}(2)_{a}$	$\mathrm{SU}(2)_{A^{\prime}}$	$\mathrm{U}(1)$	$\mathrm{Sp}(N)$	$\mathrm{SO}(8)$
A, G	$(2,2)$	1	1	0	$N(2 N+1)$	1
ϕ	$(1,1)$	1	1	+2	$N(2 N+1)$	1
ϕ^{\dagger}	$(1,1)$	1	1	-2	$N(2 N+1)$	1
$\lambda_{\alpha, a}$	$(2,1)$	2	1	+1	$N(2 N+1)$	1
$\bar{\lambda}_{\dot{\alpha}, a}$	$(1,2)$	2	1	-1	$N(2 N+1)$	1
$z_{a A^{\prime}}$	$(1,1)$	2	2	0	$N(2 N-1)$	1
$\zeta_{\alpha, A^{\prime}}$	$(2,1)$	1	2	-1	$N(2 N-1)$	1
$\bar{\zeta}_{\dot{\alpha}, A^{\prime}}$	$(1,2)$	1	2	+1	$N(2 N-1)$	1
q_{a}^{M}	$(1,1)$	2	1	0	$2 N$	8
$\eta_{\alpha M}$	$(2,1)$	1	1	-1	$2 N$	8
$\bar{\eta}_{\dot{\alpha}}^{M}$	$(1,2)$	1	1	+1	$2 N$	8

An Alternative Approach

- Consider the following orientifold action on Witten's twistor string:

$$
\begin{aligned}
\psi^{a} & \rightarrow \psi^{a}, \quad a=1,2 \\
\psi^{A} & \rightarrow-\psi^{A}, \quad A=3,4 \\
\mathcal{A} & \rightarrow \gamma_{c} \mathcal{A}^{T} \gamma_{c}^{-1}
\end{aligned}
$$

- The \mathcal{A} xfm acts on the colour indices of the $\mathrm{U}(2 N)$ theory and we take $\gamma_{c}=\mathbb{1}_{2 N \times 2 N}$.
- The invariant part of the superfield is

An Alternative Approach

- Consider the following orientifold action on Witten's twistor string:

$$
\begin{aligned}
\psi^{a} & \rightarrow \psi^{a}, \quad a=1,2 \\
\psi^{A} & \rightarrow-\psi^{A}, \quad A=3,4 \\
\mathcal{A} & \rightarrow \gamma_{c} \mathcal{A}^{T} \gamma_{c}^{-1}
\end{aligned}
$$

- The \mathcal{A} xfm acts on the colour indices of the $\mathrm{U}(2 N)$ theory and we take $\gamma_{c}=\mathbb{1}_{2 N \times 2 N}$.
- The invariant part of the superfield is

An Alternative Approach

- Consider the following orientifold action on Witten's twistor string:

$$
\begin{aligned}
\psi^{a} & \rightarrow \psi^{a}, \quad a=1,2 \\
\psi^{A} & \rightarrow-\psi^{A}, \quad A=3,4 \\
\mathcal{A} & \rightarrow \gamma_{c} \mathcal{A}^{T} \gamma_{c}^{-1}
\end{aligned}
$$

- The $\mathcal{A} \mathrm{xfm}$ acts on the colour indices of the $\mathrm{U}(2 N)$ theory and we take $\gamma_{c}=\mathbb{1}_{2 N \times 2 N}$.
- The invariant part of the superfield is

$$
\begin{aligned}
\hat{\mathcal{A}} & =\left(A+\psi^{a} \lambda_{a}+\psi^{1} \psi^{2} \phi+\psi^{3} \psi^{4} \phi^{\dagger}+\epsilon_{c d} \psi^{3} \psi^{4} \psi^{c} \tilde{\lambda}^{d}+\psi^{1} \psi^{2} \psi^{3} \psi^{4} G\right) \\
& +\left(\psi^{A} \zeta_{A}+\psi^{a} \psi^{B} z_{a B}+\epsilon_{C D} \psi^{1} \psi^{2} \psi^{C} \tilde{\zeta}^{D}\right) \\
& =\mathcal{V}+\mathcal{Z},
\end{aligned}
$$

Field Content

- \mathcal{V} is a vector in the adjoint of $\operatorname{Sp}(N)$:

$$
A_{\mu} ;\left(\lambda_{\alpha}, \bar{\lambda}_{\dot{\alpha}}\right) ;\left(\phi, \phi^{\dagger}\right)
$$

- \mathcal{Z} is a hypermultiplet in the antisymmetric:

$$
\left(\zeta_{\alpha, A}, \bar{\zeta}_{\dot{\alpha}, A}\right) \quad ; \quad z_{a A}
$$

- What about the fundamentals?

Field Content

- \mathcal{V} is a vector in the adjoint of $\operatorname{Sp}(N)$:

$$
A_{\mu} \quad ; \quad\left(\lambda_{\alpha}, \bar{\lambda}_{\dot{\alpha}}\right) ;\left(\phi, \phi^{\dagger}\right)
$$

- \mathcal{Z} is a hypermultiplet in the antisymmetric:

$$
\left(\zeta_{\alpha, A}, \bar{\zeta}_{\dot{\alpha}, A}\right) \quad ; \quad z_{a A}
$$

- What about the fundamentals?

Field Content

- \mathcal{V} is a vector in the adjoint of $\operatorname{Sp}(N)$:

$$
A_{\mu} \quad ; \quad\left(\lambda_{\alpha}, \bar{\lambda}_{\dot{\alpha}}\right) ;\left(\phi, \phi^{\dagger}\right)
$$

- \mathcal{Z} is a hypermultiplet in the antisymmetric:

$$
\left(\zeta_{\alpha, A}, \bar{\zeta}_{\dot{\alpha}, A}\right) \quad ; \quad z_{a A}
$$

- What about the fundamentals?

Flavour Cranes

- Introduce new "flavour" $\left(D_{f}\right)$ branes.
- Orientifold action on flavour indices (K, L) with
$\gamma_{f}=-\mathbb{1}$
- The $D_{c}-D_{f}$ state invariant under this is
$Q\left(Z, \bar{Z}, \psi^{a}\right)^{i}{ }_{K}=\psi^{A} Q_{A K}^{i}=\psi^{A}\left(\eta_{A K}^{i}+\psi^{a} q_{a A K}^{i}+\psi^{1} \psi^{2} \tilde{\eta}_{A K}^{i}\right)$
- Get an extra term in the HCS action
$\frac{1}{2} \int_{D_{C}} \Omega \wedge\left(Q^{K} \cdot \bar{\partial} Q_{K}+Q^{K} \wedge \hat{\mathcal{A}} \wedge Q_{K}\right)$

Flavour Branes

- Introduce new "flavour" $\left(D_{f}\right)$ branes.
- Orientifold action on flavour indices (K, L) with

$$
\gamma_{f}=-\mathbb{1}
$$

- The $D_{c}-D_{f}$ state invariant under this is

- Get an extra term in the HCS action

Flavour Branes

- Introduce new "flavour" $\left(D_{f}\right)$ branes.
- Orientifold action on flavour indices (K, L) with

$$
\gamma_{f}=-\mathbb{1}
$$

- The $D_{c}-D_{f}$ state invariant under this is

$$
\mathcal{Q}\left(Z, \bar{Z}, \psi^{a}\right)_{K}^{i}=\psi^{A} Q_{A K}^{i}=\psi^{A}\left(\eta_{A K}^{i}+\psi^{a} q_{a A K}^{i}+\psi^{1} \psi^{2} \tilde{\eta}_{A K}^{i}\right)
$$

- Get an extra term in the HCS action

Flavour Branes

- Introduce new "flavour" $\left(D_{f}\right)$ branes.
- Orientifold action on flavour indices (K, L) with

$$
\gamma_{f}=-\mathbb{1}
$$

- The $D_{c}-D_{f}$ state invariant under this is

$$
\mathcal{Q}\left(Z, \bar{Z}, \psi^{a}\right)_{K}^{i}=\psi^{A} Q_{A K}^{i}=\psi^{A}\left(\eta_{A K}^{i}+\psi^{a} q_{a A K}^{i}+\psi^{1} \psi^{2} \tilde{\eta}_{A K}^{i}\right)
$$

- Get an extra term in the HCS action

$$
\frac{1}{2} \int_{\mathrm{D}_{\mathrm{c}}} \boldsymbol{\Omega} \wedge\left(\mathcal{Q}^{K} \cdot \bar{\partial} \mathcal{Q}_{K}+\mathcal{Q}^{K} \wedge \hat{\mathcal{A}} \wedge \mathcal{Q}_{K}\right)
$$

Amplitudes

- Calculate tree amplitudes to check duality.

- Use Witten's prescription essentially unmodified.

- "Pre-analytic" amplitudes vanish
- "Analytic" (MHV) amplitudes matched:

Amplitudes

- Calculate tree amplitudes to check duality.
- Use Witten's prescription essentially unmodified.
- "Pre-analytic" amplitudes vanish
- "Analytic" (MHV) amplitudes matched:

Amplitudes

- Calculate tree amplitudes to check duality.
- Use Witten's prescription essentially unmodified.
- "Pre-analytic" amplitudes vanish

$$
\begin{array}{ll}
\left\langle\lambda^{a} \lambda^{b} \eta_{A} \eta_{B}\right\rangle & \left\langle\lambda^{a} \eta_{A} \lambda^{b} \eta_{B}\right\rangle \\
\left\langle\lambda^{a} \lambda^{b} \zeta_{A} \zeta_{B}\right\rangle & \left\langle\lambda^{a} \zeta_{A} \lambda^{b} \zeta_{B}\right\rangle
\end{array}
$$

- "Analytic" (MHV) amplitudes matched:

Amplitudes

- Calculate tree amplitudes to check duality.
- Use Witten's prescription essentially unmodified.
- "Pre-analytic" amplitudes vanish

$$
\begin{array}{ll}
\left\langle\lambda^{a} \lambda^{b} \eta_{A} \eta_{B}\right\rangle & \left\langle\lambda^{a} \eta_{A} \lambda^{b} \eta_{B}\right\rangle \\
\left\langle\lambda^{a} \lambda^{b} \zeta_{A} \zeta_{B}\right\rangle & \left\langle\lambda^{a} \zeta_{A} \lambda^{b} \zeta_{B}\right\rangle
\end{array}
$$

- "Analytic" (MHV) amplitudes matched:

$$
\begin{array}{ccc}
\left\langle\phi \phi \phi^{\dagger} \phi^{\dagger}\right\rangle & \left\langle\phi \phi^{\dagger} \phi \phi^{\dagger}\right\rangle \\
\left\langle\eta_{A} \lambda^{a} \bar{\lambda}^{b} \bar{\eta}_{B}\right\rangle & \left\langle\lambda^{a} \phi^{\dagger} \bar{\lambda}^{b} \phi\right\rangle & \left\langle z^{a}{ }_{A} z^{b}{ }_{B} z^{c}{ }_{C} z^{d}{ }_{D}\right\rangle \\
\left\langle\phi^{\dagger} z^{a}{ }_{A} z^{b}{ }_{B} \phi\right\rangle & \left\langle q^{a}{ }_{A} q^{b}{ }_{B} q^{c}{ }_{C} q^{d}{ }_{D}\right\rangle & \left\langle q^{a}{ }_{A} q^{b}{ }_{B} z^{c}{ }_{C} z^{d}{ }_{D}\right\rangle \\
\left\langle\lambda^{a} z^{b}{ }_{B} z^{c}{ }_{C} \lambda^{d} \phi^{\dagger}\right\rangle & & \left\langle\phi q^{a}{ }_{A} q^{b}{ }_{B} \eta_{C} \eta_{D}\right\rangle
\end{array}
$$

Points of Interest

- Flavour group realised is actually $S U(2) \times \mathrm{Sp}(2)$ subgroup, not full $\mathrm{SO}(8)$.
- Sp groups both on gauge and flavour branes.
- The $\mathrm{SU}(2)$ subgroup is realised geometrically.
- D_{f} 's are defects in D_{g} world-volume in contrast to IIB picture.
- "Explains" the fermionic fundamental superfields used in previous constructions
[Ferber '77; Boels, Mason, Skinner '06].

Points of Interest

- Flavour group realised is actually $S U(2) \times \mathrm{Sp}(2)$ subgroup, not full $\mathrm{SO}(8)$.
- Sp groups both on gauge and flavour branes.
- The $\mathrm{SU}(2)$ subgroup is realised geometrically.
- D_{f} 's are defects in D_{g} world-volume in contrast to IIB picture.
- "Explains" the fermionic fundamental superfields used in previous constructions [Ferber 177; Boels, Mason, Skinner '06].

Points of Interest

- Flavour group realised is actually $S U(2) \times \mathrm{Sp}(2)$ subgroup, not full $\mathrm{SO}(8)$.
- Sp groups both on gauge and flavour branes.
- The $\mathrm{SU}(2)$ subgroup is realised geometrically.
- D_{f} 's are defects in D_{g} world-volume in contrast to IIB picture.
- "Explains" the fermionic fundamental superfields used in previous constructions [Ferber '77; Boels, Mason, Skinner '06].

Points of Interest

- Flavour group realised is actually $S U(2) \times \mathrm{Sp}(2)$ subgroup, not full $\mathrm{SO}(8)$.
- Sp groups both on gauge and flavour branes.
- The $\mathrm{SU}(2)$ subgroup is realised geometrically.
- D_{f} 's are defects in D_{g} world-volume in contrast to IIB picture.
- "Explains" the fermionic fundamental superfields used in previous constructions [Ferber '77; Boels, Mason, Skinner '06].

Points of Interest

- Flavour group realised is actually $S U(2) \times \mathrm{Sp}(2)$ subgroup, not full $\mathrm{SO}(8)$.
- Sp groups both on gauge and flavour branes.
- The $\mathrm{SU}(2)$ subgroup is realised geometrically.
- D_{f} 's are defects in D_{g} world-volume in contrast to IIB picture.
- "Explains" the fermionic fundamental superfields used in previous constructions [Ferber '77; Boels, Mason, Skinner '06].

$\mathcal{N}=2$ theory with $N_{f}=2 N_{c}$

- Proceeds in similarity with the $N_{f}=4$ theory.
- Orbifold action only - no world-sheet parity operation.
- Realises $\mathrm{SU}(N) \times \mathrm{SU}(2)$ subgroup of full $\mathrm{SU}(2 N)$ flavour.
- Amplitudes match. Many are similar to before, but others different e.g.

$$
\left\langle q^{\dagger a}{ }_{A} q^{b}{ }_{B} q^{\dagger c}{ }_{C} q^{d}{ }_{D}\right\rangle \quad\left\langle\phi q^{a}{ }_{A} q^{\dagger b}{ }_{B} \eta_{C} \eta_{D}\right\rangle
$$

$\mathcal{N}=2$ theory with $N_{f}=2 N_{c}$

- Proceeds in similarity with the $N_{f}=4$ theory.
- Orbifold action only - no world-sheet parity operation.
- Realises $\mathrm{SU}(N) \times \mathrm{SU}(2)$ subgroup of full $\mathrm{SU}(2 N)$ flavour.
- Amplitudes match. Many are similar to before, but others different e.g.
$\left\langle q^{\dagger a}{ }_{A} q^{b}{ }_{B} q^{\dagger c}{ }_{C} q^{d}{ }_{D}\right\rangle \quad\left\langle\phi q^{a}{ }_{A} q^{\dagger b}{ }_{B} \eta_{C} \eta_{D}\right\rangle$

$\mathcal{N}=2$ theory with $N_{f}=2 N_{c}$

- Proceeds in similarity with the $N_{f}=4$ theory.
- Orbifold action only - no world-sheet parity operation.
- Realises $\mathrm{SU}(N) \times \mathrm{SU}(2)$ subgroup of full $\mathrm{SU}(2 N)$ flavour.
- Amplitudes match. Many are similar to before, but others different e.g.

$\mathcal{N}=2$ theory with $N_{f}=2 N_{c}$

- Proceeds in similarity with the $N_{f}=4$ theory.
- Orbifold action only - no world-sheet parity operation.
- Realises $\mathrm{SU}(N) \times \mathrm{SU}(2)$ subgroup of full $\mathrm{SU}(2 N)$ flavour.
- Amplitudes match. Many are similar to before, but others different e.g.

$$
\left\langle q^{\dagger a}{ }_{A} q_{B}^{b}{ }^{\dagger} q_{C}^{\dagger c} q^{d}{ }_{D}\right\rangle \quad\left\langle\phi q^{a}{ }_{A} q^{\dagger b}{ }_{B} \eta_{C} \eta_{D}\right\rangle
$$

Conclusions

- Perturbative dualities for theories with fundamental matter confirmed.
- Geometrical realisation for part of flavour symmetry.
- Very similar description for $N_{f}=4$ and $N_{f}=2 N_{c}$ theory in contrast to their IIB descriptions.
- New branes on supermanifolds.

Conclusions

- Perturbative dualities for theories with fundamental matter confirmed.
- Geometrical realisation for part of flavour symmetry.
- Very similar description for $N_{f}=4$ and $N_{f}=2 N_{c}$ theory in contrast to their IIB descriptions.
- New branes on supermanifolds.

Conclusions

- Perturbative dualities for theories with fundamental matter confirmed.
- Geometrical realisation for part of flavour symmetry.
- Very similar description for $N_{f}=4$ and $N_{f}=2 N_{c}$ theory in contrast to their IIB descriptions.
- New branes on supermanifolds.

Conclusions

- Perturbative dualities for theories with fundamental matter confirmed.
- Geometrical realisation for part of flavour symmetry.
- Very similar description for $N_{f}=4$ and $N_{f}=2 N_{c}$ theory in contrast to their IIB descriptions.
- New branes on supermanifolds.

