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Motivation

1. Tunneling effects in string theory/M-theory

Instantons describe tunneling across potential barrier
Important quantum effects on gravity

Difficulties:

e Need exact solutions of non-interacting theories
e String theory/M-theory on these backgrounds not
well understood beyond supergravity approximation
= EXxplicit exact solutions of M-theory compactified
down to 4 dimensions

= Holographic description



2. M-theory and Duality

T he holographic dual of these theories describes world-

volume theory of N coincident M2-branes. This is a
3d N = 8 SCFT that arises as the IR limit of 3d
N =8 SYM and it is currently unknown.

I will consider AdS, x S” ~ 3d SCFT on 8(AdSy)
£p|/€ ~ N_3/2

There is a duality conjecture for these theories, re-
lating IR and UV theories: a generalization of electric-
magnetic duality for higher spins [Leigh and Petkou,
'03]



dimension

3

Double—trace$ 2

Deformation 1

A

Weyl-equivalence of IR of O(4,1)

Unitarity bound
A=s+1

Dualization and "double-trace" deformations

0

N

spin

Duality conjecture relating IR and UV CFT3's.

e INnstantons describe the self-dual point of duality

e Duality plays an essential role in finding their holo-

graphic description

e Instantons probe CFT off conformal vacuum
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Typically, the dual effective action is a “topological”

action

This talk:

1. Conformally coupled scalar:
Bulk: scalar instantons — instability
Boundary: effective action — 3d conformally

coupled scalar field with ¢° potential

2. U(1) gauge fields, RG flows and S-duality



Conformally Coupled Scalars and AdS, x S’

The model: a conformally coupled scalar with quartic

interaction:

— R+ 2A
87TGN

1 1
S=2/d4w§[ F(99)% + S R¢% + 20"
e [ his model arises in M-theory compactification
on S’. It is a consistent truncation of the N/ = 8 4d
sugra action where we only keep the metric and one
scalar field [Duff,Liu 1999].

e The coupling is then given by \ = 871Gy

642




Potential £2V (¢) in units where 87Gy = 1 for a

pbackground with negative cosmological constant.



e There are two extrema: ¢ =0 and ¢ = ,/6/87G .

e Naively we would expect to roll down the hill by
small perturbations. However, in the presence of
gravity such a picture is misleading: one needs to
take into account Kinetic terms and boundary terms
[E. Weinberg '86]

e In fact, the ¢ = 0 point is known to be stable. It is
the well-known AdS, vacuum with standard choice
of boundary conditions [Breitenlohner and Freedman,
'82]



e But it is unstable for generic choice of boundary
conditions. One has to consider tunneling effects
due to the presence of Kinetic terms [E. Weinberg

'82]. Instanton effects can mediate the decay.

e I will construct such instantons explicitly for one
particular choice of boundary conditions and compute

the decay rate.

e [ here is an interesting holographic dual descrip-

tion of the decay that I will also analyze



Instantons

Instanton solutions: exact solutions of the Euclidean

equations of motion with finite action.

't Hooft instantons have zero stress-energy tensor:
Too ~ E? — B2 =0

We will likewise look for solutions with

T/LV:O



e T hey are "“ground states” of the Euclidean theory
e [ he problem of solving the eom is simplified be-

cause there is no back-reaction on the metric:

052 = & (dr? +dz?) , r >0
7“2 7

We need to solve the Klein-Gordon equation in an
AdS,4 background:

D¢—éR¢—2A¢3=o



Unique solution with vanishing stress-energy tensor:

2 br
»= ﬁm —sgn(M\)b2 + (r +a)? + (& — fo)2

e \ < 0O = solution is regular everywhere

e \ > 0 = solution is regular everywhere provided
a>b>0
e o = a/b labels different boundary conditions:
b(r,x) =1 ¢(0) (@) + 12 p1y(@) + ...

It gives the relation between gb(l) and qb(o):

(1) (x) = —La iy ()



Holographic analysis

1) o is a deformation parameter of the dual CFT
2) Zg,a? — b2 parametrize 3d instanton vacuum

e For a > v\ (a > 1) the effective potential becomes
unbounded from below. This is the holographic
image of the vacuum instability of AdS, towards
dressing by a non-zero scalar field with mixed bound-
ary conditions discussed above.

Similar conclusions were reached by Hertog & Horowitz
[2005] (although only numerically).



Taking the boundary to be S3 we plot the effective

potential to be:



The global minimum ¢y = 0 for a < v/A becomes
local for a > v/)\. There is a potential barrier and

the vacuum decays via tunneling of the field.
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e The instability region is ¢ — ,/6/87Gy, which cor-
responds to the total squashing of an S2 in the cor-
responding 11d geometry. This signals a breakdown

of the supergravity description in this limit.

e In the Lorentzian Coleman-De Luccia picture, our
solution describes an expanding bubble centered at
the boundary. Outisde the bubble, the metric is AdS,

QUEREIFERYEIE )]

Inside, the metric is currently unknown (the true vac-
uum). One needs to go beyond sugra to find the true

vacuum metric.



z1
Ro(t)

P = i
o o = 22
h\ &x\

Expansion of the bubble towards the bulk in the
Lorentzian.

Rp(t): radius of the bubble
z1,22. boundary coordinates
(. radial AdS coordinate
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The tunneling probability can be computed and

S ELS

47202

. %1 5202

T he deformation parameter o drives the theory from

—I
Pr~e T [err =

regime of marginal instability o« = x/v/6¢ (P — 0) to
total instability at @ — oo (P — 1).



Boundary description of the instability

e \\We have seen that the bulk instability is mirrored

by the unboundedness of the CF T effective potential

e According to the usual AdS/CFT recipe, the bound-
ary generator of correlation functions W[gb(o)] at large

N is obtained from the bulk on-shell sugra action:

¢("°a x) TA_ ¢(O) (:U) -+
eSgerJ-lEheu[fb] -~ GW[(b(O)] — <€f a3z fb(o)(a?) O($>>

CFT



e The Wilsonian effective action M[(O(x))] can be
obtained from W[qb(o)] but this is in practice a compli-
cated procedure. In the current example, dim O = 2

e Bulk analysis implies there is a duality between
gb(o) — Qb(l)' hence O « O

e [ herefore we can use duality to obtain the effective
action where operator O© of dimension 1 is turned on:

(b0y: (1)) = (J,{0)) = ((O),])
wWlJ] = KO)]
r(o)] = wiJl



T he effective action can be computed:

1 _ @- 1
Cerr = ﬁ/d:%%/g(o) <¢(01)3i¢(o)3 P0) T 5 Rlg(0)l9(0)
‘|‘2\/X(\/X — ) Qb?o)\

Redefining ¢(0) = ¢?, we get

1
Mol 900y = —= / &2 50y (5 @)+ 5 Rlagoy) ¢

+2VA(VA - @) ¢°)

= 3d conformally coupled scalar field with @6
iInteraction.

[SAH,AP 0606276; SdH, AP, IP 0611315]
[Hertog, Horowitz hep-th/0503071]



This describes the large N limit of the strongly cou-
pled 3d N =8 SCFT where an operator of dimension
1 is turned on. This CFT describes N coincident
M2-branes for large N away from the conformal fixed

point.

This action is the matter sector of the U(1) N =2
Chern-Simons action. It has recently been pro-
posed to be dual to AdS4 [Schwarz, hep-th/0411077,;
Gaiotto, Yin, arXiv:0704.3740]



Quantum correspondence: a toy model

®4 theory (with A < 0) in asymptotically AdS, versus
©° theory on the boundary

Free theories agree: this follows largely from con-

formal symmetry and group theory

Bulk and boundary instantons and their fluctua-

tions agree



= T his is non-trivial and relies on special property of

associated Legendre functions:

e+ e’+ g sj+1
Py, (2) P57 (2) = Z MP5+ (2)

This iIs a new mathematical result proven by Tom

Koornwinder [de Haro, Petkou, Koornwinder '06].

Quantization of boundary ¢° theory agrees with

quantization of scalar field

Dho(z) =1 02 (2) :



S-duality for U(1) gauge fields in AdS

e The duality between © <« O in the scalar field case
has a generalization to other fields: in the case of

gauge fields, it is electric-magnetic duality

e [ he bulk equations of motion are invariant under

e.m. transformations

e Bulk action is invariant only up to boundary terms.
These boundary terms perturb the dual CFT and

can be computed from the bulk



S-duality acts as follows:

E' = B
B = —FE
0 1
/
T = =1/t , T= |
/ 47.(.2'92

The action transforms as follows:
S[A’, E'] = S[A, E] + /d% (E—-6B) A

In the usual theory, B is fixed at the boundary and
corresponds to a source in the CFT. This source
couples to a conserved current (operator). FE cor-
responds this conserved current. S-duality inter-
changes the roles of the current and the source.



New source: J =F

New current: (O 4y = —B

= (J,(0)) < (0),J)

We can check how S-duality acts on two-point func-

tions of the current O:

1 o
(Oi(p) Oj(=p))a=0 = g—2|p| M5 (472)2  €idk Pk
PiP;
Nij = 0ij — 5



The action of S-duality on the two-point function

can be computed from the bulk and is as expected:

4
2 g0
g ) .
<O7/;(p)(9§'(—p)>14/ — 4462 ‘p| I_Iz'j_ | 47Tg492 L €5k Pk
I (47‘(’2)2 | (47_(_2)2

iIn other words

T — —1/7



RG flow

e SO far we have considered the CFT at the confor-
mal fixed point, either IR (Dirichlet) or UV (Neu-
mann). We will now consider how S-duality acts on
RG flows

e Deforming the boundary conditions in a way that
breaks conformal invariance (introducing mass pa-
rameter)

< adding relevant operator that produces flow to-

wards new IR fixed point



Take the following massive boundary condition:
1
A+ —(EF—-60B)=J
m

In terms of this source, the boundary generating func-

tional is:
WI[J] = %/J(m— 0Y2Ya T+ 60dI AaJd

where a = a([d,m).



RG flow of the two-point function

IR: (O;05) = |p|N;; + Oie;k pr
2-point function for conserved current of dim 2.

2 .
UV:  (0i0;) = i ge2y2 (PN — Oieijrpr)
S-dual current coming from dualizing gauge field.

See also [Leigh,Petkou hep-th/0309177;Kapustin]
Such behavior has also been found in quantum Hall
systems [Burgess and Dolan, hep-th/0010246]



A Proposal for the Boundary Theory

Consider the model

1 )
19 = C/d3f (5 0;%0" % 6]3,2 (qb%a)3> a=1,...,N

For g > O large N effective action can be evaluated
[Bardeen et al. '84]

Certlpa] = Tr |09(—32 +ox) + / (ngf(—az + ox)og + %Pf — U*P*)

Renormalized sadle point equations determine (o«, px).



g > 1672 = effective potential unbounded from be-
low. The model has instanton configurations for
g < 0, responsible for non-perturbative instability:

$UE) = (BN"2 /(=) Y4 (VB (B2 + (& — 7)2) 2 , % = b2

The potential on S3 for ¢ = ¢%?%/N coincides with
holographic potential for small curvature:

Vg(lo) = C<116RJ—I— 0)
4
© T A
= g\/X(\/X—oz)

o = 9(0)



Conclusions

e Instanton configurations in the bulk of AdS, are
dual to CFT's whose effective action is given by some
topological action, typically a relative of the Chern-
Simons action. They describe tunneling effects In
M-theory.

e We have checked the duality conjecture of [Leigh,
Petkou '03] for CFT3's for s = 0,1 and found their

bulk images.



Scalar fields

e Generalized b.c. that correspond to multiple trace
operators destabilize AdS; nonperturbatively by
dressing of the scalar field. The Lorentzian picture
IS in terms of tunneling to a new vacuum. The

tunneling rate was computed.

e Boundary effective action was computed and it
agrees with related proposals: 3d conformally cou-
pled scalar with go6 interaction. Boundary instantons

match bulk instantons and describe the decay.



Gauge fields

e Electric-magnetic duality interpolates between D
& N. On the boundary it interchanges the source and

the conserved current (dual CFT3’s).

e Massive deformations generate RG flow of the two-
point function. One finds the conserved current in
the IR, but the S-dual gauge field in UV.



Outlook

e Linearized gravity also has a version of S-duality
[Leigh, Petkou '07]. Duality should be helpful to deal
the higher-spin case.

e Exact instanton solutions exist for gravity as well.
The dual generating functional is the gravitational
Chern-Simons action [de Haro-Petkou, to appear].

e Gravitational instanton describes AdS bubble inside
a domain wall. Outside and close to domain wall the
space looks locally de Sitter space [in progress].



