Higgs mechanism in five-dimensional gauge theories

Francesco Knechtli Bergische Universität Wuppertal

with N. Irges (Crete U.) and M. Luz (Wuppertal U.)

EPS Conference, Manchester, 20 July 2007

- \bigcirc Perturbative computations in 5d gauge theories (1)
- O Lattice simulations of gauge group SU(2)
- \bigcirc Perturbative computations with a cut-off (2)
- O Comparing to the lattice
- O The SU(3) case
- **O** Summary and outlook

N. Irges, F.K. and M. Luz, arXiv:0706.3806 [hep-ph]

Motivation for gauge theories in dimensions d > 4

- Explain the origin of the Higgs field and electroweak spontaneous symmetry breaking (SSB)
- (Some of the) Extra dimensional components of the gauge field play the role of Higgs fields. The Higgs potential is generated by quantum corrections [Coleman and Weinberg, 1973]
- **O** Extra dimensional space:
 - S² [Fairlie, 1979; Manton, 1979]
 - non-simply connected: S^1 or T^2 [Hosotani, 1983, 1989; Antoniadis, Benakli and Quiros, 2001]
- O Finiteness of the Higgs potential to all orders in perturbation theory, without supersymmetry
- O Triviality: cut-off cannot be removed, otherwise interactions vanish

Orbifold S^1/\mathbb{Z}_2

$$S^{1}: x_{5} \in (-\pi R, \pi R]; \text{ Reflection}$$

$$\mathcal{R}: z = (x_{\mu}, x_{5}) \rightarrow \overline{z} = (x_{\mu}, -x_{5})$$

$$A_{M}(z) \rightarrow \alpha_{M}A_{M}(\overline{z}), \quad \alpha_{\mu} = 1, \ \alpha_{5} = -1$$
Fixed points $z = \overline{z} \Leftrightarrow x_{5} = 0$ and $x_{5} = \pi R$ define 4d boundaries

 \mathbb{Z}_2 projection for gauge fields

$$\mathcal{R} A_M = g A_M g^{-1}, \qquad g^2 \in \text{centre of } SU(N)$$
$$\mathcal{R} \partial_5 A_M = g \partial_5 A_M g^{-1}$$
$$\vdots$$

Parities of SU(N) generators

$$g T^{a} g^{-1} = T^{a}$$
 (unbroken), $g T^{\hat{a}} g^{-1} = -T^{\hat{a}}$ (broken)

Dirichlet boundary conditions at $z = \bar{z}$

$$A_{\mu} = g A_{\mu} g^{-1}$$
 and $A_5 = -g A_5 g^{-1}$

 \Rightarrow Only even components A^a_μ and $A^{\hat{a}}_5$ are \neq 0: breaking of the gauge symmetry

$$G = SU(p+q) \longrightarrow \mathcal{H} = SU(p) \times SU(q) \times U(1)$$

depending on the choice of \boldsymbol{g}

O
$$SU(2) \longrightarrow U(1)$$
 with $g = \text{diag}(-i, i)$: even fields
 A^3_{μ} : "photon/Z"
 $A^{1,2}_5$: complex "Higgs"

O
$$SU(3) \longrightarrow SU(2) \times U(1)$$
 with $g = \text{diag}(-1, -1, 1)$: even fields
 $A^{1,2,3,8}_{\mu}$: "photon, Z and $W^{\pm n}$
 $A^{4,5,6,7}_{5}$: doublet of complex "Higgs" in the fundamental representation of $SU(2)$

Compactification: Kaluza–Klein (KK) expansion on $S^1\mathbb{Z}_2$

$$E(x, x_5) = \frac{1}{\sqrt{2\pi R}} E^{(0)}(x) + \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} E^{(n)}(x) \cos(nx_5/R) \text{ even fields}$$
$$O(x, x_5) = \frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} O^{(n)}(x) \sin(nx_5/R) \text{ odd fields}$$

Dimensional reduction for energies $E \ll 1/R$ (cf. finite temperature field theory): low-energy 4d effective theory of zero modes $E^{(0)}(x)$

Lagrangean

$$\mathcal{L} = -rac{1}{2g_5^2} \mathrm{tr}\{F_{MN}F_{MN}\} - rac{1}{g_5^2\xi} \mathrm{tr}\{(ar{D}_M A_M)^2\}$$

with $\overline{D}_M F = \partial_M F + [\langle A_M \rangle, F]$ and we set $\xi = 1$. A_5 is a scalar from 4d point of view and can have a vacuum expectation value (vev)

$$\langle A_5 \rangle \neq 0$$

The Higgs mass and potential in perturbation theory

Mass eigenvalues [Kubo, Lim and Yamashita, 2002] Take for example SU(2) and define

$$\alpha = g_5 \langle A_5^1 \rangle R$$

Zero modes: $m_{Z^0}R = \alpha$; $m_{A_5}R = 0$, α $n \neq 0$: for gauge bosons and scalars

$$\left(m_n R\right)^2 = n^2 \,, \, \left(n \pm \alpha\right)^2$$

Hosotani mechanism: α is determined by minimizing the Coleman–Weinberg (CW) potential V. We first compute it at "infinite cut-off"

O 1-loop definition in D-dimensional Euclidean space for a real scalar field

$$\int [\mathrm{D}\phi] \mathrm{e}^{-S_{\mathrm{E}}} \sim \mathrm{e}^{-V} \equiv \frac{1}{\sqrt{\det[-\partial_{\mu}\partial_{\mu} + M^{2}]}}$$

O Take D = 4, use KK masses m_n ; after a Poisson resummation

$$V = -\frac{9}{64\pi^6 R^4} \sum_{m=1}^{\infty} \frac{\cos(2\pi m\alpha)}{m^5}$$

The Higgs mass and potential in perturbation theory

O The CW potential is periodic and has degenerate minima at

$$\alpha = \alpha_{\min} = 0 \mod \mathbb{Z}$$

- O No spontaneous symmetry breaking $U(1) \longrightarrow$ nothing: integer shift of KK index n
- O Polyakov line P around the extra dimension is the physical meaning of A_5

$$[\langle P \rangle, \text{Cartan generator}] = [e^{-i\pi\alpha\sigma^1}, \sigma^3] = 0 \text{ for } \alpha \in \mathbb{Z}$$

O Higgs mass

$$(m_H R)_{\text{pert}}^2 \equiv R^2 \frac{\mathrm{d}^2 V}{\mathrm{d}v^2} \bigg|_{\alpha = \alpha_{\min}} = \frac{9\zeta(3)}{16\pi^4} g_4^2 \bigg|_{\alpha = 0}$$

in terms of dimensionless effective 4d coupling

$$g_4^2 = \frac{g_5^2}{2\pi R} \left(=\frac{N}{N_5\beta}\right)$$

 ${\bf O}$ "Infinite cut-off" means close to the trivial point $g_4 \to 0:~Z^0$ massless and Higgs \to massless

- O Lattice cut-off: $\Lambda = 1/a$, a is the lattice spacing
- O Orbifold geometry: $\frac{T}{a} \times (\frac{L}{a})^3 \times (N_5 = \frac{\pi R}{a})$, compact: $\frac{T}{a}$, $\frac{L}{a} \gg N_5$
- O Parameter space

$$N_5 = \pi R \Lambda$$
 and $eta = 2N/(g_5^2 \Lambda)$

Trivial point: $\beta \to \infty$ and $N_5 \to \infty$

O Lattice gauge field on the orbifold

$$A_M(z, M) \in su(N) \longrightarrow U(z, M) = \exp\{aA_M(z)\} \in SU(N)$$

O Lattice action

$$S_{\mathrm{W}}^{\mathrm{orb}}[U] = rac{eta}{2N} \sum_{p} w(p) \operatorname{tr}\{1 - U(p)\}, \quad w(p) = \left\{ egin{array}{cc} rac{1}{2} & p ext{ in the boundary} \\ 1 & ext{ in all other cases.} \end{array}
ight\}$$

Sum over oriented plaquettes p in the strip $\{z = a(n_{\mu}, n_5) | 0 \le n_5 \le N_5\}$. Periodic boundary conditions (b.c.) in 4d. In the 5th dimension, *only* Dirichlet b.c.

$$A_{\mu} \ = \ g \ A_{\mu} \ g^{-1} \quad \longrightarrow \quad U(z,\mu) \ = \ g \ U(z,\mu) \ g^{-1} \qquad ext{at} \ n_5 = 0 \ , \ N_5$$

O on S^1 : can gauge transform $U((n_\mu, n_5), 5) \longrightarrow V(n_\mu) = \exp\{a(A_5)_{\text{lat}}\}$, related to the Polyakov line $P = V^{2N_5}$

$$a(A_{5})_{\text{lat}} = \frac{1}{4N_{5}}(P - P^{\dagger}) + O(a^{3})$$

$$Polyakov line P \text{ on } S^{1}/\mathbb{Z}_{2}$$

$$P(n_{\mu}) = lgl^{\dagger}g^{-1}$$

$$g^{-1} = \frac{1}{1^{+}} g$$

$$x_{5}=0$$

$$x_{5}=\pi R$$

O Lattice Higgs field

$$\Phi(n_{\mu}) = \left[\frac{1}{4N_5}(P - P^{\dagger}), g\right] \sim \phi^{\hat{a}}T^{\hat{a}}$$

 Φ transforms under U(1) like field strength and has charge equal to 2 O Since tr{ Φ } $\equiv 0$ take

$$H(n_0) = \sum_{n_1, n_2, n_3} \operatorname{tr} \{ \Phi(n_\mu) \Phi(n_\mu)^{\dagger} \}$$

O Spectrum of scalars = Higgs/glueball states

$$C(t) = \sum_{n_0} \{ \langle H(n_0)H(n_0+t) \rangle - \langle H(n_0) \rangle \langle H(n_0+t) \rangle \}$$

$$\stackrel{T \to \infty}{=} \sum_{\alpha} |\langle \alpha | H(0) | 0 \rangle |^2 e^{-m_{\alpha}t} \stackrel{t \to \infty}{\longrightarrow} |\langle 1 | H(0) | 0 \rangle |^2 e^{-m_{H}t}$$

- O effective masses $am_{\text{eff}}(t+a/2) = \ln(C(t)/C(t+a))$, plateau at am_H for large t
- O Can do better: variational basis of (smeared) Higgs operators, masses m_{α} can be extracted with method of [Lüscher and Wolff, 1990]
- O Photon field is defined using the Higgs field: for SU(2), with $\varphi = \Phi/\sqrt{\det(\Phi)}$

$$egin{array}{rcl} W_k(n_\mu)&=&-i\mathrm{tr}\{\sigma^3 V_k\}\,, &k=1,2,3\ V_k(n_\mu)&=&U(n_\mu,k)arphi(n_\mu+\hat{k})U^\dagger(n_\mu,k)arphi(n_\mu)\, \end{array}$$

• Vector spectrum is extracted with the same method as for the scalar one

Simulation results for $SU(2) \xrightarrow{\mathbb{Z}_2} U(1)$, with $N_5 = 6$, $\frac{L}{a} = 12$ and $\frac{T}{a} = 96$

Phase transition at $\beta_c \simeq 1.607$ $\beta < \beta_c$: confinement phase, masses in lattice units $\gg 1$ cannot be measured $\beta > \beta_c$: deconfinement Coulomb phase (no SSB) or Higgs phase \Leftarrow

- Higgs mass is larger than result from 1-loop CW
- Massive $Z^0 \Leftrightarrow$ SSB!, contrary to CW result at "infinite cut-off"
- O 4d U(1) Higgs model for *charge* q = 2 and infinite quartic coupling has a Higgs phase [Fradkin and Shenker 1979]

Perturbative computations with a cut-off (2)

The lattice action can be described by a continuum effective lagrangean [Symanzik, 1981; 1983]

$$-\mathcal{L} = rac{1}{2g_5^2} \mathrm{tr}\{F_{MN}F_{MN}\} + \sum_{p_i} c^{(p_i)}(N_5,eta) \; a^{p_i-4} \; \mathcal{O}^{(p_i)} + \dots$$

 $\mathcal{O}^{(p_i)}$ is an operator of dimension $p_i > 4$.

For example, for the Wilson plaquette action

$$c \mathcal{O}^{(6)} = \sum_{M,N} \frac{c}{2} \operatorname{tr} \{ F_{MN} (D_M^2 + D_N^2) F_{MN} \}, \qquad c \equiv c^{(6)} (N_5, \beta) = \frac{1}{12} + \dots$$

 \Rightarrow in the interior of the (N_5,β) parameter space higher derivative operators contribute to the mass matrix of A_μ

On the orbifold, there are additional boundary counterterms

$$c_0 \, {\cal O}^{(5)} \;\; = \;\; rac{\pi a c_0}{4} F^{\hat a}_{5\mu} F^{\hat a}_{5\mu} \left[\delta(x_5) + \delta(x_5 - \pi R)
ight] \,, \qquad c_0 \equiv c^{(5)}(N_5,eta)$$

 \Rightarrow contribution to the mass matrix of the even gauge fields A^a_μ

Perturbative computations with a cut-off (2)

CW potential with cut-off effects

- 1. Compute the cut-off corrections to the KK masses m_n of A_μ
- 2. Insert the cut-off dependent KK masses into the 1-loop CW formula

$$V^{\text{gauge}} = -\frac{1}{2} \sum_{n} \int_{0}^{\infty} \frac{\mathrm{d}l}{l} \mathrm{e}^{-\frac{1}{l}(m_{n}^{2}a^{2}+2D)} \frac{1}{a^{D}} \mathrm{I}_{0}^{D} \left(\frac{2}{l}\right)$$

and compute it including up to ${\sf O}(a^2)$ corrections in $V^{
m gauge}$

3. Add scalar and ghost contributions (no cut-off corrections)

$$V = \underbrace{4V_{A_{\mu}}^{\text{gauge}}}_{A_{\mu}} \underbrace{+V_{A_{5}}^{\text{scalar}}}_{A_{5}} \underbrace{-2V_{\text{scalar}}^{\text{scalar}}}_{\text{ghosts}}$$

1. For $SU(2) \xrightarrow{\mathbb{Z}_2} U(1)$ the KK masses are corrected to $(N_5 = \frac{\pi R}{a})$ $(m_n R)^2 = n^2$, for n > 0 $(n \pm \alpha)^2 + \frac{c_0 \alpha^2}{2} \frac{\pi}{N_5} + c (n \pm \alpha)^4 \frac{\pi^2}{N_5^2}$ for $n \ge 0$

Perturbative computations with a cut-off (2)

CW potential for $N_5 = 6$ with cut-off effects described by c and c_0 . Requiring the vev v < 1/a implies the constraint

$$|\alpha| < \sqrt{\frac{NN_5}{\pi^2\beta}}$$

- O On the circle $(c_0 = 0)$ the potential is periodic. If c > 1.72 there is SSB, $\alpha_{\min} : 0 \longrightarrow 1/2$
- O On the orbifold $(c_0 \neq 0)$ no periodicity and $0 < lpha_{\min} < 1$
- It is not possible to have SSB with $c_0 > 0$ and c = 0
- C Large values of c are not unexpected due to quantum corrections, which can be power-like in 1/a

Comparing to the lattice

Compute m_Z , m_{Z^*} and

$$lpha_{\min}(eta) = \sqrt{\mathrm{tr}\{\Phi\Phi^{\dagger}\}N_5^2/(2\pi)}$$

from lattice simulations at $N_5 = 6$, $\frac{L}{a} = 12$ and $\frac{T}{a} = 96$

Compare with KK corrected masses using c = 13.0 and $c_0 = 0.0121$. CW has minimum at $\alpha_{\min} = 0.225$ (vertical line)

Comparing to the lattice

Ratio of the Higgs to the Z-boson mass

$$ho_{HZ^0} = m_H/m_{Z^0}$$

On the lattice it is possible to get $\rho_{HZ^0} \geq 1$

For a given β

- 1. get $\alpha_{\min}(\beta)$ from simulations
- 2. tune c and c_0 such that the minimum of the CW potential is at $\alpha_{\min}(\beta)$
- 3. compute the Higgs mass

$$(m_H R)^2 = \frac{N}{N_5 \beta} R^4 \left. \frac{\mathrm{d}^2 V}{\mathrm{d} \alpha^2} \right|_{\alpha = \alpha_{\min}}$$

 $N_{5} = 6$

The SU(3) case

No lattice data yet, play with the CW potential. Is it possible to tune c and c_0 such that

 $ho_{HZ^0} \equiv m_H/m_{Z^0} \ge 1.25$ and $\cos(\theta_W) \equiv m_W/m_{Z^0} \simeq 0.877$? With $c = c_0 = 0$: $\cos(\theta_W) = \frac{1}{2}$

N_5	С	c_0	$ ho_{HZ^0}$	$\cos(heta_{ m W})$
2	3.1	0.02	0.54	0.899
2	50.0	0.2	1.25	0.888
3	3.1	0.0036	0.23	0.868
3	50.0	0.05	0.43	0.836
4	3.1	0.0007	0.12	0.877
4	50.0	0.01	0.21	0.883
6	3.1	0.0001	0.04	0.820
6	50.0	0.0017	0.07	0.888

 $N_{5} = 6$

Summary and outlook

- We have simulated a 5d pure gauge theory on an orbifold: $SU(2) \xrightarrow{\mathbb{Z}_2} U(1)$ with $N_5 = 6$ and $\beta > \beta_c$
- The Z-boson mass is $m_{Z^0} \neq 0$, contrary to 1-loop predictions for the Coleman-Weinberg potential at "infinite cut-off"
- This puzzle is resolved by considering cut-off effects in the CW potential, in particular corrections to the KK masses from higher derivative operators
- There is good qualitative agreement comparing our new CW computation with the lattice data
- O Outlook: there are two regions of the parameter space (N_5, β) , where $g_4^2 = N/(N_5\beta)$ can be small and which are interesting for Standard Model physics:
 - 1. small N_5 : compactification (\rightarrow anisotropic lattices)
 - 2. large N_5 and small β : localization [Dvali and Shifman]
- **O** $SU(3), SU(3) \times U(1), \ldots$