Higgs mechanism in five-dimensional gauge theories

Francesco Knechtli
Bergische Universität Wuppertal
with N. Irges (Crete U.) and M. Luz (Wuppertal U.)
EPS Conference, Manchester, 20 July 2007

O Perturbative computations in 5d gauge theories (1)
O Lattice simulations of gauge group $S U(2)$
O Perturbative computations with a cut-off (2)
O Comparing to the lattice
O The $S U(3)$ case
O Summary and outlook
N. Irges, F.K. and M. Luz, arXiv:0706.3806 [hep-ph]

Perturbative computations in 5d gauge theories (1)

Motivation for gauge theories in dimensions $d>4$

O Explain the origin of the Higgs field and electroweak spontaneous symmetry breaking (SSB)
O (Some of the) Extra dimensional components of the gauge field play the role of Higgs fields. The Higgs potential is generated by quantum corrections [Coleman and Weinberg, 1973]
O Extra dimensional space:

- S^{2} [Fairlie, 1979; Manton, 1979]
- non-simply connected: S^{1} or T^{2} [Hosotani, 1983, 1989; Antoniadis, Benakli and Quiros, 2001]
O Finiteness of the Higgs potential to all orders in perturbation theory, without supersymmetry

O Triviality: cut-off cannot be removed, otherwise interactions vanish

Perturbative computations in 5d gauge theories (1)

Orbifold S^{1} / \mathbb{Z}_{2}

$S^{1}: x_{5} \in(-\pi R, \pi R] ;$ Reflection

$$
\begin{aligned}
\mathcal{R}: z=\left(x_{\mu}, x_{5}\right) & \rightarrow \bar{z}=\left(x_{\mu},-x_{5}\right) \\
A_{M}(z) & \rightarrow \quad \alpha_{M} A_{M}(\bar{z}), \quad \alpha_{\mu}=1, \alpha_{5}=-1
\end{aligned}
$$

Fixed points $z=\bar{z} \Leftrightarrow x_{5}=0$ and $x_{5}=\pi R$ define 4d boundaries
\mathbb{Z}_{2} projection for gauge fields

$$
\begin{aligned}
\mathcal{R} A_{M} & =g A_{M} g^{-1}, \quad g^{2} \in \text { centre of } S U(N) \\
\mathcal{R} \partial_{5} A_{M} & =g \partial_{5} A_{M} g^{-1}
\end{aligned}
$$

Parities of $S U(N)$ generators

$$
g T^{a} g^{-1}=T^{a}(\text { unbroken }), \quad g T^{\hat{a}} g^{-1}=-T^{\hat{a}} \text { (broken) }
$$

Perturbative computations in 5d gauge theories (1)

Dirichlet boundary conditions at $z=\bar{z}$

$$
A_{\mu}=g A_{\mu} g^{-1} \quad \text { and } \quad A_{5}=-g A_{5} g^{-1}
$$

\Rightarrow Only even components A_{μ}^{a} and $A_{5}^{\hat{a}}$ are $\neq 0$: breaking of the gauge symmetry

$$
G=S U(p+q) \longrightarrow \mathcal{H}=S U(p) \times S U(q) \times U(1)
$$

depending on the choice of g
$\bigcirc S U(2) \longrightarrow U(1)$ with $g=\operatorname{diag}(-i, i)$: even fields
A_{μ}^{3} : "photon $/ Z$ "
$A_{5}^{1,2}$: complex "Higgs"
$\bigcirc S U(3) \longrightarrow S U(2) \times U(1)$ with $g=\operatorname{diag}(-1,-1,1):$ even fields
$A_{\mu}^{1,2,3,8}$: "photon, Z and $W^{ \pm "}$
$A_{5}^{4,5,6,7}$: doublet of complex "Higgs" in the fundamental representation of $S U(2)$

Perturbative computations in 5d gauge theories (1)

Compactification: Kaluza-Klein (KK) expansion on $S^{1} \mathbb{Z}_{2}$

$$
\begin{aligned}
E\left(x, x_{5}\right) & =\frac{1}{\sqrt{2 \pi R}} E^{(0)}(x)+\frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} E^{(n)}(x) \cos \left(n x_{5} / R\right) \quad \text { even fields } \\
O\left(x, x_{5}\right) & =\frac{1}{\sqrt{\pi R}} \sum_{n=1}^{\infty} O^{(n)}(x) \sin \left(n x_{5} / R\right) \quad \text { odd fields }
\end{aligned}
$$

Dimensional reduction for energies $E \ll 1 / R$ (cf. finite temperature field theory): low-energy 4d effective theory of zero modes $E^{(0)}(x)$

Lagrangean

$$
\mathcal{L}=-\frac{1}{2 g_{5}^{2}} \operatorname{tr}\left\{F_{M N} F_{M N}\right\}-\frac{1}{g_{5}^{2} \xi} \operatorname{tr}\left\{\left(\bar{D}_{M} A_{M}\right)^{2}\right.
$$

with $\bar{D}_{M} F=\partial_{M} F+\left[\left\langle A_{M}\right\rangle, F\right]$ and we set $\xi=1 . A_{5}$ is a scalar from $4 d$ point of view and can have a vacuum expectation value (vev)

$$
\left\langle A_{5}\right\rangle \neq 0
$$

The Higgs mass and potential in perturbation theory

Mass eigenvalues [Kubo, Lim and Yamashita, 2002] Take for example $S U(2)$ and define

$$
\alpha=g_{5}\left\langle A_{5}^{1}\right\rangle R
$$

Zero modes: $m_{Z^{0}} R=\alpha ; \quad m_{A_{5}} R=0, \alpha$
$n \neq 0$: for gauge bosons and scalars

$$
\left(m_{n} R\right)^{2}=n^{2},(n \pm \alpha)^{2}
$$

Hosotani mechanism: α is determined by minimizing the Coleman-Weinberg (CW) potential V. We first compute it at "infinite cut-off"

O 1-loop definition in D-dimensional Euclidean space for a real scalar field

$$
\int[\mathrm{D} \phi] \mathrm{e}^{-S_{\mathrm{E}}} \sim \mathrm{e}^{-V} \equiv \frac{1}{\sqrt{\operatorname{det}\left[-\partial_{\mu} \partial_{\mu}+M^{2}\right]}}
$$

O Take $D=4$, use KK masses m_{n}; after a Poisson resummation

$$
V=-\frac{9}{64 \pi^{6} R^{4}} \sum_{m=1}^{\infty} \frac{\cos (2 \pi m \alpha)}{m^{5}}
$$

The Higgs mass and potential in perturbation theory

O The CW potential is periodic and has degenerate minima at

$$
\alpha=\alpha_{\min }=0 \bmod \mathbb{Z}
$$

O No spontaneous symmetry breaking $U(1) \longrightarrow$ nothing: integer shift of KK index n
O Polyakov line P around the extra dimension is the physical meaning of A_{5}

$$
[\langle P\rangle, \text { Cartan generator }]=\left[e^{-i \pi \alpha \sigma^{1}}, \sigma^{3}\right]=0 \text { for } \alpha \in \mathbb{Z}
$$

O Higgs mass

$$
\left.\left(m_{H} R\right)_{\mathrm{pert}}^{2} \equiv R^{2} \frac{\mathrm{~d}^{2} V}{\mathrm{~d} v^{2}}\right|_{\alpha=\alpha_{\min }}=\left.\frac{9 \zeta(3)}{16 \pi^{4}} g_{4}^{2}\right|_{\alpha=0}
$$

in terms of dimensionless effective 4d coupling

$$
g_{4}^{2}=\frac{g_{5}^{2}}{2 \pi R} \quad\left(=\frac{N}{N_{5} \beta}\right)
$$

O "Infinite cut-off" means close to the trivial point $g_{4} \rightarrow 0: Z^{0}$ massless and Higgs \rightarrow massless

Lattice simulations of gauge group $S U(2)$

O Lattice cut-off: $\Lambda=1 / a, a$ is the lattice spacing
Orbifold geometry: $\frac{T}{a} \times\left(\frac{L}{a}\right)^{3} \times\left(N_{5}=\frac{\pi R}{a}\right)$, compact: $\frac{T}{a}, \frac{L}{a} \gg N_{5}$
O Parameter space

$$
N_{5}=\pi R \Lambda \quad \text { and } \quad \beta=2 N /\left(g_{5}^{2} \Lambda\right)
$$

Trivial point: $\beta \rightarrow \infty$ and $N_{5} \rightarrow \infty$
O Lattice gauge field on the orbifold

$$
A_{M}(z, M) \in \operatorname{su}(N) \quad \longrightarrow U(z, M)=\exp \left\{a A_{M}(z)\right\} \in S U(N)
$$

O Lattice action
$S_{\mathrm{W}}^{\mathrm{orb}}[U]=\frac{\beta}{2 N} \sum_{p} w(p) \operatorname{tr}\{1-U(p)\}, \quad w(p)= \begin{cases}\frac{1}{2} & p \text { in the boundary } \\ 1 & \text { in all other cases. }\end{cases}$
Sum over oriented plaquettes p in the strip $\left\{z=a\left(n_{\mu}, n_{5}\right) \mid 0 \leq n_{5} \leq N_{5}\right\}$. Periodic boundary conditions (b.c.) in 4d. In the 5th dimension, only Dirichlet b.c.

$$
A_{\mu}=g A_{\mu} g^{-1} \quad \longrightarrow \quad U(z, \mu)=g U(z, \mu) g^{-1} \quad \text { at } n_{5}=0, N_{5}
$$

Lattice simulations of gauge group $S U(2)$

O on S^{1} : can gauge transform $U\left(\left(n_{\mu}, n_{5}\right), 5\right) \longrightarrow V\left(n_{\mu}\right)=\exp \left\{a\left(A_{5}\right)_{\text {lat }}\right\}$, related to the Polyakov line $P=V^{2 N_{5}}$

$$
a\left(A_{5}\right)_{\mathrm{lat}}=\frac{1}{4 N_{5}}\left(P-P^{\dagger}\right)+\mathrm{O}\left(a^{3}\right)
$$

Polyakov line P on S^{1} / \mathbb{Z}_{2}
O

$$
P\left(n_{\mu}\right)=l g l^{\dagger} g^{-1}
$$

O Lattice Higgs field

$$
\Phi\left(n_{\mu}\right)=\left[\frac{1}{4 N_{5}}\left(P-P^{\dagger}\right), g\right] \sim \phi^{\hat{a}} T^{\hat{a}}
$$

Φ transforms under $U(1)$ like field strength and has charge equal to 2
O Since $\operatorname{tr}\{\Phi\} \equiv 0$ take

$$
H\left(n_{0}\right)=\sum_{n_{1}, n_{2}, n_{3}} \operatorname{tr}\left\{\Phi\left(n_{\mu}\right) \Phi\left(n_{\mu}\right)^{\dagger}\right\}
$$

Lattice simulations of gauge group $S U(2)$

O Spectrum of scalars $=$ Higgs/glueball states

$$
\begin{aligned}
C(t) & =\sum_{n_{0}}\left\{<H\left(n_{0}\right) H\left(n_{0}+t\right)>-<H\left(n_{0}\right)><H\left(n_{0}+t\right)>\right\} \\
& \stackrel{T \rightarrow \infty}{=} \sum_{\alpha}|<\alpha| H(0)\left|0>\left.\right|^{2} \mathrm{e}^{-m_{\alpha} t} \xrightarrow{t \rightarrow \infty}\right|<1|H(0)| 0>\left.\right|^{2} \mathrm{e}^{-m_{H} t}
\end{aligned}
$$

O effective masses $a m_{\text {eff }}(t+a / 2)=\ln (C(t) / C(t+a))$, plateau at $a m_{H}$ for large t
O Can do better: variational basis of (smeared) Higgs operators, masses m_{α} can be extracted with method of [Lüscher and Wolff, 1990]
O Photon field is defined using the Higgs field: for $S U(2)$, with $\varphi=\Phi / \sqrt{\operatorname{det}(\Phi)}$

$$
\begin{aligned}
W_{k}\left(n_{\mu}\right) & =-i \operatorname{tr}\left\{\sigma^{3} V_{k}\right\}, \quad k=1,2,3 \\
V_{k}\left(n_{\mu}\right) & =U\left(n_{\mu}, k\right) \varphi\left(n_{\mu}+\hat{k}\right) U^{\dagger}\left(n_{\mu}, k\right) \varphi\left(n_{\mu}\right)
\end{aligned}
$$

O Vector spectrum is extracted with the same method as for the scalar one

Lattice simulations of gauge group $S U(2)$

Simulation results for $S U(2) \xrightarrow{\mathbb{Z}_{2}} U(1)$, with $N_{5}=6, \frac{L}{a}=12$ and $\frac{T}{a}=96$
Phase transition at $\beta_{c} \simeq 1.607$
$\beta<\beta_{c}$: confinement phase, masses in lattice units $\gg 1$ cannot be measured $\beta>\beta_{c}$: deconfinement Coulomb phase (no SSB) or Higgs phase \Leftarrow

O Higgs mass is larger than result from 1-loop CW
O Massive $Z^{0} \Leftrightarrow$ SSB!, contrary to CW result at "infinite cut-off"
O 4d $U(1)$ Higgs model for charge $q=2$ and infinite quartic coupling has a Higgs phase [Fradkin and Shenker 1979]

Perturbative computations with a cut-off (2)

The lattice action can be described by a continuum effective lagrangean [Symanzik, 1981; 1983]

$$
-\mathcal{L}=\frac{1}{2 g_{5}^{2}} \operatorname{tr}\left\{F_{M N} F_{M N}\right\}+\sum_{p_{i}} c^{\left(p_{i}\right)}\left(N_{5}, \beta\right) a^{p_{i}-4} \mathcal{O}^{\left(p_{i}\right)}+\ldots
$$

$\mathcal{O}^{\left(p_{i}\right)}$ is an operator of dimension $p_{i}>4$.
For example, for the Wilson plaquette action

$$
c \mathcal{O}^{(6)}=\sum_{M, N} \frac{c}{2} \operatorname{tr}\left\{F_{M N}\left(D_{M}^{2}+D_{N}^{2}\right) F_{M N}\right\}, \quad c \equiv c^{(6)}\left(N_{5}, \beta\right)=\frac{1}{12}+\ldots
$$

\Rightarrow in the interior of the $\left(N_{5}, \beta\right)$ parameter space higher derivative operators contribute to the mass matrix of A_{μ}

On the orbifold, there are additional boundary counterterms

$$
c_{0} \mathcal{O}^{(5)}=\frac{\pi a c_{0}}{4} F_{5 \mu}^{\hat{a}} F_{5 \mu}^{\hat{a}}\left[\delta\left(x_{5}\right)+\delta\left(x_{5}-\pi R\right)\right], \quad c_{0} \equiv c^{(5)}\left(N_{5}, \beta\right)
$$

\Rightarrow contribution to the mass matrix of the even gauge fields A_{μ}^{a}

Perturbative computations with a cut-off (2)

CW potential with cut-off effects

1. Compute the cut-off corrections to the KK masses m_{n} of A_{μ}
2. Insert the cut-off dependent KK masses into the 1-loop CW formula

$$
V^{\text {gauge }}=-\frac{1}{2} \sum_{n} \int_{0}^{\infty} \frac{\mathrm{d} l}{l} \mathrm{e}^{-\frac{1}{l}\left(m_{n}^{2} a^{2}+2 D\right)} \frac{1}{a^{D}} \mathrm{I}_{0}^{D}\left(\frac{2}{l}\right)
$$

and compute it including up to $\mathrm{O}\left(a^{2}\right)$ corrections in $V^{\text {gauge }}$
3. Add scalar and ghost contributions (no cut-off corrections)

$$
V=\underbrace{4 V^{\text {gauge }}}_{A_{\mu}}+\underbrace{V^{\text {scalar }}}_{A_{5}} \underbrace{-2 V^{\text {scalar }}}_{\text {ghosts }}
$$

1. For $S U(2) \xrightarrow{\mathbb{Z}_{2}} U(1)$ the KK masses are corrected to $\left(N_{5}=\frac{\pi R}{a}\right)$

$$
\begin{array}{ll}
\left(m_{n} R\right)^{2}= & n^{2}, \quad \text { for } n>0 \\
& (n \pm \alpha)^{2}+\frac{c_{0} \alpha^{2}}{2} \frac{\pi}{N_{5}}+c(n \pm \alpha)^{4} \frac{\pi^{2}}{N_{5}^{2}} \quad \text { for } n \geq 0
\end{array}
$$

Perturbative computations with a cut-off (2)

CW potential for $N_{5}=6$ with cut-off effects described by c and c_{0}. Requiring the vev $v<1 / a$ implies the constraint

$$
|\alpha|<\sqrt{\frac{N N_{5}}{\pi^{2} \beta}}
$$

O On the circle $\left(c_{0}=0\right)$ the potential is periodic. If $c>1.72$ there is SSB, $\alpha_{\min }: 0 \longrightarrow 1 / 2$
O On the orbifold $\left(c_{0} \neq 0\right)$ no periodicity and $0<\alpha_{\text {min }}<1$
O It is not possible to have SSB with $c_{0}>0$ and $c=0$
O Large values of c are not unexpected due to quantum corrections, which can be power-like in 1 /a

Comparing to the lattice

Compute $m_{Z}, m_{Z^{*}}$ and

$$
\alpha_{\min }(\beta)=\sqrt{\operatorname{tr}\left\{\Phi \Phi^{\dagger}\right\} N_{5}^{2} /(2 \pi)}
$$

from lattice simulations at $N_{5}=6, \frac{L}{a}=12$ and $\frac{T}{a}=96$

Compare with KK corrected masses using $c=13.0$ and $c_{0}=0.0121$. CW has minimum at $\alpha_{\text {min }}=0.225$ (vertical line)

Comparing to the lattice

Ratio of the Higgs to the Z-boson mass

$$
\rho_{H Z^{0}}=m_{H} / m_{Z^{0}}
$$

On the lattice it is possible to get $\rho_{H Z^{0}} \geq 1$

$$
N_{5}=6
$$

For a given β

1. get $\alpha_{\min }(\beta)$ from simulations
2. tune c and c_{0} such that the minimum of the CW potential is at $\alpha_{\text {min }}(\beta)$
3. compute the Higgs mass

$$
\left(m_{H} R\right)^{2}=\left.\frac{N}{N_{5} \beta} R^{4} \frac{\mathrm{~d}^{2} V}{\mathrm{~d} \alpha^{2}}\right|_{\alpha=\alpha_{\min }}
$$

The $S U(3)$ case

No lattice data yet, play with the CW potential. Is it possible to tune c and c_{0} such that

$$
\rho_{H Z^{0}} \equiv m_{H} / m_{Z^{0}} \geq 1.25 \quad \text { and } \quad \cos \left(\theta_{\mathrm{W}}\right) \equiv m_{W} / m_{Z^{0}} \simeq 0.877 \quad ?
$$

With $c=c_{0}=0: \cos \left(\theta_{\mathrm{W}}\right)=\frac{1}{2}$

N_{5}	c	c_{0}	$\rho_{H Z^{0}}$	$\cos \left(\theta_{\mathrm{W}}\right)$
2	3.1	0.02	0.54	0.899
2	50.0	0.2	1.25	0.888
3	3.1	0.0036	0.23	0.868
3	50.0	0.05	0.43	0.836
4	3.1	0.0007	0.12	0.877
4	50.0	0.01	0.21	0.883
6	3.1	0.0001	0.04	0.820
6	50.0	0.0017	0.07	0.888

Summary and outlook

O We have simulated a 5 d pure gauge theory on an orbifold: $S U(2) \xrightarrow{\mathbb{Z}_{2}} U(1)$ with $N_{5}=6$ and $\beta>\beta_{c}$
O The Z-boson mass is $m_{Z^{0}} \neq 0$, contrary to 1-loop predictions for the ColemanWeinberg potential at "infinite cut-off"
O This puzzle is resolved by considering cut-off effects in the CW potential, in particular corrections to the KK masses from higher derivative operators
O There is good qualitative agreement comparing our new CW computation with the lattice data

O Outlook: there are two regions of the parameter space $\left(N_{5}, \beta\right)$, where $g_{4}^{2}=N /\left(N_{5} \beta\right)$ can be small and which are interesting for Standard Model physics:

1. small N_{5} : compactification (\rightarrow anisotropic lattices)
2. large N_{5} and small β : localization [Dvali and Shifman]
$\bigcirc S U(3), S U(3) \times U(1), \ldots$
